Normalized defining polynomial
\( x^{20} - 6 x^{19} - 53 x^{18} + 348 x^{17} + 1098 x^{16} - 8142 x^{15} - 11667 x^{14} + 100758 x^{13} + 71988 x^{12} - 730512 x^{11} - 273903 x^{10} + 3212694 x^{9} + 616446 x^{8} - 8513820 x^{7} - 526425 x^{6} + 13024230 x^{5} - 747660 x^{4} - 10277550 x^{3} + 1728925 x^{2} + 3018000 x - 707225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34095805371377238983021762969970703125=3^{18}\cdot 5^{15}\cdot 7^{8}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{10} - \frac{3}{20} a^{9} + \frac{1}{5} a^{8} + \frac{1}{20} a^{7} + \frac{1}{5} a^{6} - \frac{3}{20} a^{5} + \frac{3}{10} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{20} a^{11} - \frac{1}{4} a^{9} + \frac{3}{20} a^{8} - \frac{3}{20} a^{7} - \frac{1}{20} a^{6} - \frac{3}{20} a^{5} - \frac{7}{20} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{9} - \frac{3}{20} a^{8} + \frac{1}{5} a^{7} - \frac{3}{20} a^{6} - \frac{1}{10} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} - \frac{1}{20} a^{7} - \frac{1}{5} a^{6} - \frac{1}{20} a^{5} + \frac{1}{10} a^{4} - \frac{1}{4} a$, $\frac{1}{40} a^{14} - \frac{1}{40} a^{11} - \frac{1}{40} a^{10} - \frac{7}{40} a^{9} - \frac{1}{20} a^{8} - \frac{3}{40} a^{7} + \frac{1}{20} a^{6} + \frac{1}{40} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a + \frac{3}{8}$, $\frac{1}{200} a^{15} - \frac{1}{100} a^{14} - \frac{3}{200} a^{12} - \frac{1}{200} a^{11} + \frac{1}{200} a^{10} + \frac{6}{25} a^{9} - \frac{3}{40} a^{8} - \frac{6}{25} a^{7} + \frac{49}{200} a^{6} + \frac{19}{40} a^{5} - \frac{17}{40} a^{4} + \frac{2}{5} a^{3} - \frac{1}{10} a^{2} + \frac{1}{8} a$, $\frac{1}{200} a^{16} + \frac{1}{200} a^{14} - \frac{3}{200} a^{13} + \frac{3}{200} a^{12} + \frac{1}{50} a^{11} - \frac{1}{40} a^{10} + \frac{13}{100} a^{9} + \frac{3}{50} a^{8} - \frac{1}{100} a^{7} - \frac{37}{200} a^{6} + \frac{1}{20} a^{5} + \frac{3}{40} a^{4} + \frac{13}{40} a^{3} - \frac{3}{40} a^{2} + \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{200} a^{17} - \frac{1}{200} a^{14} + \frac{3}{200} a^{13} - \frac{3}{200} a^{12} - \frac{1}{50} a^{11} - \frac{1}{40} a^{10} - \frac{13}{100} a^{9} + \frac{23}{200} a^{8} + \frac{41}{200} a^{7} - \frac{29}{200} a^{6} + \frac{3}{20} a^{5} + \frac{1}{10} a^{4} + \frac{11}{40} a^{3} - \frac{3}{20} a^{2} + \frac{1}{4} a$, $\frac{1}{400} a^{18} - \frac{1}{400} a^{17} - \frac{1}{400} a^{16} + \frac{1}{400} a^{14} + \frac{7}{400} a^{13} - \frac{7}{400} a^{12} + \frac{1}{100} a^{11} - \frac{1}{80} a^{10} + \frac{1}{400} a^{9} + \frac{81}{400} a^{8} - \frac{23}{200} a^{7} + \frac{7}{80} a^{6} + \frac{21}{80} a^{5} - \frac{11}{80} a^{4} + \frac{13}{40} a^{3} - \frac{7}{16} a^{2} - \frac{3}{16} a - \frac{1}{16}$, $\frac{1}{2030509518045434835887600} a^{19} - \frac{142193473337047681091}{406101903609086967177520} a^{18} + \frac{1715122890324482746027}{2030509518045434835887600} a^{17} + \frac{365489507756609850841}{253813689755679354485950} a^{16} - \frac{2781203326925492300027}{2030509518045434835887600} a^{15} - \frac{15433017709068968764101}{2030509518045434835887600} a^{14} - \frac{3053175745511944265081}{406101903609086967177520} a^{13} + \frac{4310131453307373424043}{1015254759022717417943800} a^{12} - \frac{22738658122768994404003}{2030509518045434835887600} a^{11} + \frac{27435514517837981613253}{2030509518045434835887600} a^{10} - \frac{29266402890465287238827}{2030509518045434835887600} a^{9} - \frac{19447378623747171185179}{203050951804543483588760} a^{8} - \frac{70145077750547362726821}{2030509518045434835887600} a^{7} + \frac{325313089188589545172339}{2030509518045434835887600} a^{6} + \frac{153460049027724495715517}{406101903609086967177520} a^{5} - \frac{1985292410479475646703}{25381368975567935448595} a^{4} + \frac{80547467164778177727439}{406101903609086967177520} a^{3} + \frac{91681717493128114562641}{406101903609086967177520} a^{2} + \frac{19401861049389830090513}{81220380721817393435504} a - \frac{4433828340489022246813}{40610190360908696717752}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8111181538130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_5:F_5$ (as 20T49):
| A solvable group of order 200 |
| The 20 conjugacy class representatives for $C_2\times C_5:F_5$ |
| Character table for $C_2\times C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 10.10.870450781956328125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |