Normalized defining polynomial
\( x^{20} - 10 x^{19} - 15 x^{18} + 355 x^{17} - 85 x^{16} - 5333 x^{15} + 2720 x^{14} + 43940 x^{13} - 16315 x^{12} - 212780 x^{11} + 16401 x^{10} + 594910 x^{9} + 152230 x^{8} - 860395 x^{7} - 495745 x^{6} + 452545 x^{5} + 436755 x^{4} + 69475 x^{3} - 18175 x^{2} - 4575 x - 115 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33622220606157460929453372955322265625=5^{26}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{20} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{5} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{260} a^{16} + \frac{1}{260} a^{15} - \frac{5}{26} a^{14} + \frac{11}{52} a^{12} - \frac{1}{65} a^{11} + \frac{11}{260} a^{10} - \frac{9}{26} a^{9} - \frac{3}{26} a^{8} - \frac{9}{26} a^{7} - \frac{11}{26} a^{6} - \frac{3}{52} a^{5} + \frac{23}{52} a^{4} - \frac{1}{26} a^{3} - \frac{1}{13} a^{2} + \frac{5}{52} a - \frac{1}{13}$, $\frac{1}{1300} a^{17} + \frac{1}{650} a^{16} + \frac{4}{325} a^{15} + \frac{3}{260} a^{14} + \frac{63}{260} a^{13} - \frac{79}{1300} a^{12} - \frac{47}{325} a^{11} - \frac{209}{1300} a^{10} + \frac{119}{260} a^{9} + \frac{27}{130} a^{8} - \frac{2}{13} a^{7} + \frac{1}{260} a^{6} - \frac{3}{130} a^{5} - \frac{11}{65} a^{4} + \frac{17}{52} a^{3} + \frac{27}{260} a^{2} + \frac{79}{260} a - \frac{43}{260}$, $\frac{1}{287300} a^{18} + \frac{67}{287300} a^{17} + \frac{331}{287300} a^{16} - \frac{71}{28730} a^{15} + \frac{699}{28730} a^{14} - \frac{31727}{143650} a^{13} + \frac{7388}{71825} a^{12} + \frac{837}{22100} a^{11} - \frac{4661}{57460} a^{10} - \frac{2037}{4420} a^{9} + \frac{53}{2873} a^{8} + \frac{12011}{57460} a^{7} + \frac{1477}{3380} a^{6} - \frac{24129}{57460} a^{5} - \frac{303}{2873} a^{4} + \frac{4671}{28730} a^{3} + \frac{491}{1690} a^{2} - \frac{22843}{57460} a - \frac{5257}{11492}$, $\frac{1}{4225268876385661702850929300} a^{19} + \frac{1261893393408785031859}{2112634438192830851425464650} a^{18} + \frac{264924199867155064793031}{2112634438192830851425464650} a^{17} + \frac{2428684717855807510499559}{4225268876385661702850929300} a^{16} - \frac{79025908487197525937331401}{4225268876385661702850929300} a^{15} - \frac{243243603486574734642596729}{4225268876385661702850929300} a^{14} - \frac{2654871804806904619089219}{35807363359200522905516350} a^{13} - \frac{661924396772076004887506473}{4225268876385661702850929300} a^{12} + \frac{558468960682455219086426429}{4225268876385661702850929300} a^{11} - \frac{205196378432501248093578104}{1056317219096415425712732325} a^{10} + \frac{7031963451231520381790575}{42252688763856617028509293} a^{9} + \frac{10436450852191651187544641}{49709045604537196504128580} a^{8} - \frac{7678884548449017636099025}{42252688763856617028509293} a^{7} - \frac{183919650982179876047532243}{422526887638566170285092930} a^{6} + \frac{196587965703283857671203697}{845053775277132340570185860} a^{5} - \frac{27572011643506791188377213}{65004136559779410813091220} a^{4} - \frac{233871011097024132908146829}{845053775277132340570185860} a^{3} - \frac{319618070951667167327103281}{845053775277132340570185860} a^{2} - \frac{88096487885015196918186783}{211263443819283085142546465} a + \frac{192756265657384263263550929}{422526887638566170285092930}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1908142429540 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 60 |
| The 5 conjugacy class representatives for $A_5$ |
| Character table for $A_5$ |
Intermediate fields
| 5.5.26265625.1 x2, 10.10.1159693418212890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.5.26265625.1 |
| Degree 6 sibling: | 6.6.44152515625.1 |
| Degree 10 sibling: | 10.10.1159693418212890625.1 |
| Degree 12 sibling: | Deg 12 |
| Degree 15 sibling: | Deg 15 |
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.13.7 | $x^{10} + 5 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_5$ | $[3/2]_{2}$ |
| 5.10.13.7 | $x^{10} + 5 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_5$ | $[3/2]_{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 41.6.4.1 | $x^{6} + 1435 x^{3} + 2904768$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |