Normalized defining polynomial
\( x^{20} - 4 x^{19} - 30 x^{18} + 104 x^{17} + 412 x^{16} - 1026 x^{15} - 3328 x^{14} + 4417 x^{13} + 15997 x^{12} - 4955 x^{11} - 40546 x^{10} - 18016 x^{9} + 38071 x^{8} + 41423 x^{7} + 6152 x^{6} - 9501 x^{5} - 5039 x^{4} - 725 x^{3} + 54 x^{2} + 19 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32403238330091474061186973105401=3^{4}\cdot 61^{2}\cdot 401^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} + \frac{5}{13} a^{16} - \frac{2}{13} a^{15} + \frac{2}{13} a^{14} + \frac{1}{13} a^{13} - \frac{2}{13} a^{11} + \frac{6}{13} a^{10} + \frac{4}{13} a^{9} - \frac{5}{13} a^{8} - \frac{2}{13} a^{7} - \frac{5}{13} a^{6} + \frac{4}{13} a^{5} - \frac{6}{13} a^{4} + \frac{6}{13} a^{3} + \frac{6}{13} a^{2} + \frac{3}{13} a - \frac{1}{13}$, $\frac{1}{39} a^{18} - \frac{1}{39} a^{17} + \frac{7}{39} a^{16} + \frac{1}{39} a^{15} + \frac{2}{39} a^{14} + \frac{7}{39} a^{13} - \frac{2}{39} a^{12} + \frac{5}{39} a^{11} - \frac{19}{39} a^{10} - \frac{1}{13} a^{9} - \frac{11}{39} a^{8} - \frac{19}{39} a^{7} + \frac{8}{39} a^{6} - \frac{17}{39} a^{5} + \frac{16}{39} a^{4} - \frac{17}{39} a^{3} - \frac{7}{39} a^{2} - \frac{19}{39} a - \frac{7}{39}$, $\frac{1}{28285683977053188153} a^{19} + \frac{250974559150372051}{28285683977053188153} a^{18} + \frac{337803914682296471}{28285683977053188153} a^{17} + \frac{1254616896286407865}{3142853775228132017} a^{16} - \frac{5813595055562349449}{28285683977053188153} a^{15} - \frac{13519298330686120702}{28285683977053188153} a^{14} - \frac{2085156401856718538}{9428561325684396051} a^{13} + \frac{4898407043115220468}{28285683977053188153} a^{12} + \frac{666464971107869113}{9428561325684396051} a^{11} - \frac{10255595106920592581}{28285683977053188153} a^{10} + \frac{3229958930541501268}{28285683977053188153} a^{9} + \frac{10012133616730168756}{28285683977053188153} a^{8} + \frac{1291019000384884713}{3142853775228132017} a^{7} - \frac{6934802864022672016}{28285683977053188153} a^{6} - \frac{2067570176441042698}{9428561325684396051} a^{5} - \frac{2592747745838850070}{9428561325684396051} a^{4} - \frac{290196671245516760}{28285683977053188153} a^{3} + \frac{741743029429750324}{9428561325684396051} a^{2} + \frac{3513983300153442629}{9428561325684396051} a - \frac{13733370920560688330}{28285683977053188153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2239930591.43 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:D_5$ (as 20T81):
| A solvable group of order 320 |
| The 20 conjugacy class representatives for $C_2\times C_2^4:D_5$ |
| Character table for $C_2\times C_2^4:D_5$ |
Intermediate fields
| \(\Q(\sqrt{401}) \), 5.5.160801.1 x5, 10.10.5692384239498549.1, 10.10.14195471918949.1, 10.10.10368641602001.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 401 | Data not computed | ||||||