Normalized defining polynomial
\( x^{20} - 45 x^{18} + 693 x^{16} - 5090 x^{14} + 20514 x^{12} - 48945 x^{10} + 71522 x^{8} - 64065 x^{6} + 33966 x^{4} - 9675 x^{2} + 1125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32185904308758178562875852800000000000=2^{20}\cdot 3^{10}\cdot 5^{11}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $75.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{11} - \frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{15} a^{12} - \frac{1}{15} a^{10} - \frac{1}{15} a^{8} + \frac{1}{15} a^{6} + \frac{4}{15} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{11} - \frac{1}{15} a^{9} + \frac{1}{15} a^{7} + \frac{4}{15} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{10} + \frac{2}{15} a^{6} - \frac{1}{3} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{15} a^{15} + \frac{1}{15} a^{11} + \frac{2}{15} a^{7} - \frac{1}{3} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{15} a^{16} + \frac{1}{15} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{15} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{15} a^{17} + \frac{1}{15} a^{11} + \frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{15} a^{5} - \frac{2}{5} a^{3}$, $\frac{1}{367845} a^{18} + \frac{794}{367845} a^{16} + \frac{4738}{367845} a^{14} - \frac{878}{122615} a^{12} - \frac{31388}{367845} a^{10} + \frac{3271}{367845} a^{8} + \frac{47628}{122615} a^{6} - \frac{30181}{73569} a^{4} + \frac{20481}{122615} a^{2} - \frac{11867}{24523}$, $\frac{1}{1839225} a^{19} + \frac{9968}{367845} a^{17} + \frac{4738}{1839225} a^{15} - \frac{10336}{367845} a^{13} + \frac{66704}{1839225} a^{11} + \frac{7564}{24523} a^{9} - \frac{568283}{1839225} a^{7} - \frac{26409}{122615} a^{5} + \frac{69527}{613075} a^{3} - \frac{7278}{24523} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2239028342990 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n144 |
| Character table for t20n144 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||