Normalized defining polynomial
\( x^{20} - x^{19} - 31 x^{18} + 30 x^{17} + 368 x^{16} - 338 x^{15} - 2132 x^{14} + 1794 x^{13} + 6524 x^{12} - 4730 x^{11} - 11153 x^{10} + 6622 x^{9} + 10781 x^{8} - 4995 x^{7} - 5641 x^{6} + 1922 x^{5} + 1391 x^{4} - 316 x^{3} - 108 x^{2} + 12 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3206128490667995866421572265625=3^{10}\cdot 5^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(165=3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{165}(64,·)$, $\chi_{165}(1,·)$, $\chi_{165}(131,·)$, $\chi_{165}(4,·)$, $\chi_{165}(134,·)$, $\chi_{165}(136,·)$, $\chi_{165}(74,·)$, $\chi_{165}(16,·)$, $\chi_{165}(149,·)$, $\chi_{165}(91,·)$, $\chi_{165}(29,·)$, $\chi_{165}(31,·)$, $\chi_{165}(161,·)$, $\chi_{165}(34,·)$, $\chi_{165}(164,·)$, $\chi_{165}(101,·)$, $\chi_{165}(41,·)$, $\chi_{165}(49,·)$, $\chi_{165}(116,·)$, $\chi_{165}(124,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{26069} a^{18} - \frac{4705}{26069} a^{17} - \frac{3752}{26069} a^{16} + \frac{99}{199} a^{15} - \frac{4790}{26069} a^{14} + \frac{215}{26069} a^{13} - \frac{3285}{26069} a^{12} + \frac{7618}{26069} a^{11} - \frac{9726}{26069} a^{10} - \frac{7242}{26069} a^{9} + \frac{5982}{26069} a^{8} + \frac{756}{26069} a^{7} + \frac{1007}{26069} a^{6} - \frac{6225}{26069} a^{5} + \frac{10298}{26069} a^{4} + \frac{1838}{26069} a^{3} - \frac{10479}{26069} a^{2} - \frac{2223}{26069} a - \frac{1424}{26069}$, $\frac{1}{3622628295995963} a^{19} - \frac{52228984885}{3622628295995963} a^{18} - \frac{1654130183225409}{3622628295995963} a^{17} - \frac{1775671016444522}{3622628295995963} a^{16} - \frac{1744134740482159}{3622628295995963} a^{15} - \frac{105651025952296}{3622628295995963} a^{14} - \frac{449763897425804}{3622628295995963} a^{13} - \frac{819545829119549}{3622628295995963} a^{12} - \frac{1053295058849499}{3622628295995963} a^{11} - \frac{211058445567393}{3622628295995963} a^{10} + \frac{122815159815711}{3622628295995963} a^{9} - \frac{876393995990442}{3622628295995963} a^{8} + \frac{1129504663697236}{3622628295995963} a^{7} - \frac{760355620215612}{3622628295995963} a^{6} + \frac{924223330454500}{3622628295995963} a^{5} - \frac{1045968996168922}{3622628295995963} a^{4} + \frac{1148589467768929}{3622628295995963} a^{3} + \frac{1411465484119934}{3622628295995963} a^{2} + \frac{760622789543558}{3622628295995963} a - \frac{759684186778156}{3622628295995963}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 527561758.587 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{5}, \sqrt{33})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.10.1790566527853125.1, \(\Q(\zeta_{33})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |