Normalized defining polynomial
\( x^{20} - 321 x^{18} + 39182 x^{16} - 2362410 x^{14} + 78516261 x^{12} - 1521153905 x^{10} + 17521759023 x^{8} - 118717836375 x^{6} + 453844496710 x^{4} - 896697119210 x^{2} + 708898288583 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3172126672449549143567477325812349950492672=2^{20}\cdot 11^{16}\cdot 23^{3}\cdot 419^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 419$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{419} a^{14} + \frac{98}{419} a^{12} - \frac{204}{419} a^{10} - \frac{88}{419} a^{8} - \frac{149}{419} a^{6} + \frac{36}{419} a^{4} - \frac{156}{419} a^{2}$, $\frac{1}{419} a^{15} + \frac{98}{419} a^{13} - \frac{204}{419} a^{11} - \frac{88}{419} a^{9} - \frac{149}{419} a^{7} + \frac{36}{419} a^{5} - \frac{156}{419} a^{3}$, $\frac{1}{1046870243} a^{16} + \frac{941172}{1046870243} a^{14} - \frac{366610958}{1046870243} a^{12} + \frac{242368786}{1046870243} a^{10} - \frac{19784491}{1046870243} a^{8} - \frac{180052644}{1046870243} a^{6} + \frac{191089822}{1046870243} a^{4} - \frac{416260}{2498497} a^{2} + \frac{1768}{5963}$, $\frac{1}{1046870243} a^{17} + \frac{941172}{1046870243} a^{15} - \frac{366610958}{1046870243} a^{13} + \frac{242368786}{1046870243} a^{11} - \frac{19784491}{1046870243} a^{9} - \frac{180052644}{1046870243} a^{7} + \frac{191089822}{1046870243} a^{5} - \frac{416260}{2498497} a^{3} + \frac{1768}{5963} a$, $\frac{1}{313014454295924169430101461798986302208283} a^{18} - \frac{11634484477511937712691064127834}{313014454295924169430101461798986302208283} a^{16} - \frac{105045803681668424050065311073738067394}{313014454295924169430101461798986302208283} a^{14} + \frac{118572701172891077145170536177427349127270}{313014454295924169430101461798986302208283} a^{12} - \frac{39258485026461601202788738208960081108962}{313014454295924169430101461798986302208283} a^{10} + \frac{59385215104206442569404994707370931189435}{313014454295924169430101461798986302208283} a^{8} + \frac{134395892051022064154375803251793251328138}{313014454295924169430101461798986302208283} a^{6} - \frac{310502909317518503905726280590296250371}{747051203570224748043201579472521007657} a^{4} + \frac{29893763213751716882861023382635698}{1782938433341825174327450070340145603} a^{2} + \frac{1056676610789594599869306575593957}{4255222991269272492428281790787937}$, $\frac{1}{313014454295924169430101461798986302208283} a^{19} - \frac{11634484477511937712691064127834}{313014454295924169430101461798986302208283} a^{17} - \frac{105045803681668424050065311073738067394}{313014454295924169430101461798986302208283} a^{15} + \frac{118572701172891077145170536177427349127270}{313014454295924169430101461798986302208283} a^{13} - \frac{39258485026461601202788738208960081108962}{313014454295924169430101461798986302208283} a^{11} + \frac{59385215104206442569404994707370931189435}{313014454295924169430101461798986302208283} a^{9} + \frac{134395892051022064154375803251793251328138}{313014454295924169430101461798986302208283} a^{7} - \frac{310502909317518503905726280590296250371}{747051203570224748043201579472521007657} a^{5} + \frac{29893763213751716882861023382635698}{1782938433341825174327450070340145603} a^{3} + \frac{1056676610789594599869306575593957}{4255222991269272492428281790787937} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 827787980943000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n432 are not computed |
| Character table for t20n432 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2065776536197.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 419 | Data not computed | ||||||