Normalized defining polynomial
\( x^{20} - 2 x^{19} - 33 x^{18} + 54 x^{17} + 399 x^{16} - 470 x^{15} - 2298 x^{14} + 1592 x^{13} + 6862 x^{12} - 2024 x^{11} - 10603 x^{10} + 385 x^{9} + 8089 x^{8} + 480 x^{7} - 3142 x^{6} - 173 x^{5} + 625 x^{4} + 2 x^{3} - 55 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3165599696740582502041142585281=11^{16}\cdot 43^{4}\cdot 67^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} - \frac{5}{11} a^{14} - \frac{4}{11} a^{13} + \frac{3}{11} a^{11} + \frac{4}{11} a^{10} - \frac{4}{11} a^{9} + \frac{4}{11} a^{8} - \frac{2}{11} a^{7} - \frac{5}{11} a^{6} + \frac{4}{11} a^{5} - \frac{2}{11} a^{4} + \frac{2}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{4}{11} a^{14} + \frac{2}{11} a^{13} + \frac{3}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{11} a^{10} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} - \frac{4}{11} a^{7} + \frac{1}{11} a^{6} - \frac{4}{11} a^{5} + \frac{1}{11} a^{4} + \frac{2}{11} a^{3} + \frac{1}{11} a^{2} + \frac{5}{11}$, $\frac{1}{11} a^{17} - \frac{3}{11} a^{13} - \frac{3}{11} a^{12} + \frac{4}{11} a^{11} + \frac{1}{11} a^{10} + \frac{1}{11} a^{9} + \frac{2}{11} a^{8} - \frac{2}{11} a^{7} + \frac{5}{11} a^{6} - \frac{4}{11} a^{5} - \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} - \frac{3}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{18} - \frac{3}{11} a^{14} - \frac{3}{11} a^{13} + \frac{4}{11} a^{12} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{2}{11} a^{9} - \frac{2}{11} a^{8} + \frac{5}{11} a^{7} - \frac{4}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} + \frac{3}{11} a^{3} - \frac{3}{11} a^{2} - \frac{4}{11} a$, $\frac{1}{599891102963471} a^{19} - \frac{11953905355039}{599891102963471} a^{18} - \frac{10702609768043}{599891102963471} a^{17} - \frac{1837671988623}{54535554814861} a^{16} + \frac{121813648770}{54535554814861} a^{15} + \frac{130915099735718}{599891102963471} a^{14} + \frac{83998874557407}{599891102963471} a^{13} + \frac{256678055273520}{599891102963471} a^{12} - \frac{121289523549966}{599891102963471} a^{11} - \frac{103954886844602}{599891102963471} a^{10} + \frac{283123979059233}{599891102963471} a^{9} + \frac{161477848611038}{599891102963471} a^{8} + \frac{273201634975738}{599891102963471} a^{7} - \frac{178400656581219}{599891102963471} a^{6} - \frac{1172042131983}{26082221867977} a^{5} + \frac{233838651208639}{599891102963471} a^{4} - \frac{85132545774436}{599891102963471} a^{3} + \frac{93402393057284}{599891102963471} a^{2} - \frac{190462426347679}{599891102963471} a - \frac{146367845238720}{599891102963471}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 500606346.877 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T41):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.617567936161.1 x2, 10.10.1779213224079841.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |