Properties

Label 20.20.3165599696...5281.1
Degree $20$
Signature $[20, 0]$
Discriminant $11^{16}\cdot 43^{4}\cdot 67^{4}$
Root discriminant $33.50$
Ramified primes $11, 43, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_2^4:C_5$ (as 20T41)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 16, 17, -294, -418, 2072, 2391, -7261, -5692, 13087, 6629, -12200, -3754, 5755, 815, -1371, -22, 158, -12, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 7*x^19 - 12*x^18 + 158*x^17 - 22*x^16 - 1371*x^15 + 815*x^14 + 5755*x^13 - 3754*x^12 - 12200*x^11 + 6629*x^10 + 13087*x^9 - 5692*x^8 - 7261*x^7 + 2391*x^6 + 2072*x^5 - 418*x^4 - 294*x^3 + 17*x^2 + 16*x + 1)
 
gp: K = bnfinit(x^20 - 7*x^19 - 12*x^18 + 158*x^17 - 22*x^16 - 1371*x^15 + 815*x^14 + 5755*x^13 - 3754*x^12 - 12200*x^11 + 6629*x^10 + 13087*x^9 - 5692*x^8 - 7261*x^7 + 2391*x^6 + 2072*x^5 - 418*x^4 - 294*x^3 + 17*x^2 + 16*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 7 x^{19} - 12 x^{18} + 158 x^{17} - 22 x^{16} - 1371 x^{15} + 815 x^{14} + 5755 x^{13} - 3754 x^{12} - 12200 x^{11} + 6629 x^{10} + 13087 x^{9} - 5692 x^{8} - 7261 x^{7} + 2391 x^{6} + 2072 x^{5} - 418 x^{4} - 294 x^{3} + 17 x^{2} + 16 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3165599696740582502041142585281=11^{16}\cdot 43^{4}\cdot 67^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.50$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 43, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{4061692501534240057} a^{19} - \frac{273773440105984500}{4061692501534240057} a^{18} + \frac{1566789123506083513}{4061692501534240057} a^{17} + \frac{319640918072630822}{4061692501534240057} a^{16} - \frac{276081172758183731}{4061692501534240057} a^{15} + \frac{1132822465904487286}{4061692501534240057} a^{14} - \frac{1038854889474396236}{4061692501534240057} a^{13} - \frac{1107674505056130438}{4061692501534240057} a^{12} + \frac{581446445115732840}{4061692501534240057} a^{11} + \frac{1374688255454580666}{4061692501534240057} a^{10} - \frac{285661409355714505}{4061692501534240057} a^{9} + \frac{1087161446825485511}{4061692501534240057} a^{8} + \frac{1091073511865204269}{4061692501534240057} a^{7} + \frac{769057892370970532}{4061692501534240057} a^{6} + \frac{292635390970330814}{4061692501534240057} a^{5} - \frac{1468070672292575169}{4061692501534240057} a^{4} - \frac{653748583153983098}{4061692501534240057} a^{3} - \frac{825675169573900995}{4061692501534240057} a^{2} - \frac{821611011284717560}{4061692501534240057} a + \frac{542903009250665200}{4061692501534240057}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 506580279.946 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:C_5$ (as 20T41):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$
Character table for $C_2\times C_2^4:C_5$

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.617567936161.1 x2, 10.10.1779213224079841.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
$43$43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
43.4.2.1$x^{4} + 215 x^{2} + 16641$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$67$67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$