Properties

Label 20.20.3158085435...0976.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{30}\cdot 11^{18}\cdot 23^{2}$
Root discriminant $33.49$
Ramified primes $2, 11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2\times C_2^4:C_5$ (as 20T86)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 36, 126, -514, -1617, 3640, 6850, -14294, -9892, 26928, -340, -19030, 4715, 6016, -2110, -936, 385, 70, -32, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 32*x^18 + 70*x^17 + 385*x^16 - 936*x^15 - 2110*x^14 + 6016*x^13 + 4715*x^12 - 19030*x^11 - 340*x^10 + 26928*x^9 - 9892*x^8 - 14294*x^7 + 6850*x^6 + 3640*x^5 - 1617*x^4 - 514*x^3 + 126*x^2 + 36*x + 1)
 
gp: K = bnfinit(x^20 - 2*x^19 - 32*x^18 + 70*x^17 + 385*x^16 - 936*x^15 - 2110*x^14 + 6016*x^13 + 4715*x^12 - 19030*x^11 - 340*x^10 + 26928*x^9 - 9892*x^8 - 14294*x^7 + 6850*x^6 + 3640*x^5 - 1617*x^4 - 514*x^3 + 126*x^2 + 36*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 32 x^{18} + 70 x^{17} + 385 x^{16} - 936 x^{15} - 2110 x^{14} + 6016 x^{13} + 4715 x^{12} - 19030 x^{11} - 340 x^{10} + 26928 x^{9} - 9892 x^{8} - 14294 x^{7} + 6850 x^{6} + 3640 x^{5} - 1617 x^{4} - 514 x^{3} + 126 x^{2} + 36 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3158085435706035744886516350976=2^{30}\cdot 11^{18}\cdot 23^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{600131037658254871} a^{19} - \frac{168814883769746893}{600131037658254871} a^{18} + \frac{19993529818825077}{600131037658254871} a^{17} + \frac{30052403025835790}{600131037658254871} a^{16} - \frac{228417641934565033}{600131037658254871} a^{15} + \frac{274799278524752774}{600131037658254871} a^{14} + \frac{227513927489383353}{600131037658254871} a^{13} + \frac{291782086381669067}{600131037658254871} a^{12} - \frac{39292559632422090}{600131037658254871} a^{11} - \frac{271001222127136047}{600131037658254871} a^{10} + \frac{78682887942548394}{600131037658254871} a^{9} + \frac{19208323774667437}{600131037658254871} a^{8} - \frac{155773267656870801}{600131037658254871} a^{7} + \frac{186031417649358959}{600131037658254871} a^{6} + \frac{162322370624313347}{600131037658254871} a^{5} + \frac{272754125964695487}{600131037658254871} a^{4} - \frac{170767986233662111}{600131037658254871} a^{3} - \frac{54691008561409003}{600131037658254871} a^{2} + \frac{127494133196825818}{600131037658254871} a - \frac{92557819422890712}{600131037658254871}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 561363191.152 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_2^4:C_5$ (as 20T86):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 320
The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$
Character table for $C_2^2\times C_2^4:C_5$ is not computed

Intermediate fields

\(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\), 10.10.55534384018432.1, 10.10.5048580365312.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.1$x^{10} - 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$