Normalized defining polynomial
\( x^{20} - 96 x^{18} + 3780 x^{16} - 78696 x^{14} + 930918 x^{12} - 6252552 x^{10} + 22526100 x^{8} - 38331864 x^{6} + 22734657 x^{4} - 3857880 x^{2} + 7056 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3108100390178909231545231736202854400000000=2^{56}\cdot 3^{28}\cdot 5^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $133.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{3}{8} a^{4} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{160} a^{10} - \frac{1}{20} a^{8} + \frac{9}{80} a^{6} + \frac{9}{40} a^{4} - \frac{3}{32} a^{2} - \frac{11}{40}$, $\frac{1}{320} a^{11} - \frac{1}{40} a^{9} + \frac{9}{160} a^{7} - \frac{1}{8} a^{6} + \frac{9}{80} a^{5} + \frac{1}{4} a^{4} - \frac{3}{64} a^{3} + \frac{1}{8} a^{2} - \frac{11}{80} a - \frac{1}{2}$, $\frac{1}{320} a^{12} - \frac{3}{160} a^{8} + \frac{1}{16} a^{6} - \frac{87}{320} a^{4} - \frac{1}{2} a^{3} - \frac{21}{80} a^{2} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{640} a^{13} - \frac{1}{640} a^{11} - \frac{1}{320} a^{10} + \frac{1}{320} a^{9} + \frac{1}{40} a^{8} - \frac{19}{320} a^{7} + \frac{11}{160} a^{6} + \frac{117}{640} a^{5} + \frac{11}{80} a^{4} - \frac{189}{640} a^{3} - \frac{5}{64} a^{2} + \frac{43}{160} a - \frac{29}{80}$, $\frac{1}{640} a^{14} - \frac{1}{640} a^{12} - \frac{1}{320} a^{10} - \frac{3}{320} a^{8} + \frac{9}{128} a^{6} - \frac{13}{640} a^{4} - \frac{1}{2} a^{3} - \frac{11}{80} a^{2} + \frac{11}{40}$, $\frac{1}{640} a^{15} - \frac{1}{640} a^{11} - \frac{1}{320} a^{10} - \frac{1}{32} a^{9} + \frac{1}{40} a^{8} - \frac{37}{640} a^{7} + \frac{11}{160} a^{6} + \frac{1}{40} a^{5} + \frac{11}{80} a^{4} + \frac{93}{640} a^{3} + \frac{27}{64} a^{2} - \frac{3}{32} a - \frac{29}{80}$, $\frac{1}{2560} a^{16} - \frac{1}{1280} a^{14} + \frac{1}{2560} a^{12} + \frac{1}{640} a^{10} - \frac{1}{16} a^{9} + \frac{11}{512} a^{8} - \frac{1}{16} a^{7} + \frac{103}{1280} a^{6} - \frac{1}{16} a^{5} - \frac{1161}{2560} a^{4} + \frac{7}{16} a^{3} - \frac{153}{320} a^{2} + \frac{1}{4} a - \frac{17}{160}$, $\frac{1}{2560} a^{17} - \frac{1}{1280} a^{15} + \frac{1}{2560} a^{13} - \frac{1}{640} a^{11} + \frac{119}{2560} a^{9} - \frac{1}{16} a^{8} + \frac{31}{1280} a^{7} - \frac{1}{16} a^{6} - \frac{169}{2560} a^{5} + \frac{7}{16} a^{4} - \frac{69}{160} a^{3} + \frac{7}{16} a^{2} - \frac{15}{32} a - \frac{1}{4}$, $\frac{1}{35375733662737920} a^{18} + \frac{248329278401}{2947977805228160} a^{16} - \frac{1497128531429}{11791911220912640} a^{14} - \frac{8552876060387}{5895955610456320} a^{12} - \frac{29245299656947}{11791911220912640} a^{10} - \frac{1}{16} a^{9} + \frac{70318571544033}{1473988902614080} a^{8} - \frac{1}{16} a^{7} + \frac{828885758866109}{11791911220912640} a^{6} - \frac{1}{16} a^{5} + \frac{369708169093229}{1179191122091264} a^{4} - \frac{1}{16} a^{3} - \frac{7397744971781}{736994451307040} a^{2} + \frac{1}{4} a - \frac{28290575330469}{73699445130704}$, $\frac{1}{495260271278330880} a^{19} - \frac{1}{70751467325475840} a^{18} + \frac{24024393716949}{165086757092776960} a^{17} + \frac{722579641413}{4716764488365056} a^{16} + \frac{3378984851599}{4716764488365056} a^{15} + \frac{10709559172767}{23583822441825280} a^{14} - \frac{123048704496161}{165086757092776960} a^{13} + \frac{3287106158767}{23583822441825280} a^{12} - \frac{231918773766383}{165086757092776960} a^{11} + \frac{10820438374271}{23583822441825280} a^{10} + \frac{4740385868199047}{165086757092776960} a^{9} + \frac{210846601040511}{4716764488365056} a^{8} - \frac{60848642003693}{33017351418555392} a^{7} + \frac{484620451505241}{4716764488365056} a^{6} + \frac{9772679698894701}{165086757092776960} a^{5} + \frac{3981479248622933}{23583822441825280} a^{4} + \frac{1881150536502509}{10317922318298560} a^{3} - \frac{708380315401471}{2947977805228160} a^{2} + \frac{1711585480544987}{10317922318298560} a + \frac{38776341309233}{1473988902614080}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14681979145400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 13 conjugacy class representatives for t20n201 |
| Character table for t20n201 |
Intermediate fields
| \(\Q(\sqrt{3}) \), 10.10.293830090272276480000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.3 | $x^{4} + 6 x^{2} + 4 x + 14$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.8.24.77 | $x^{8} - 3$ | $8$ | $1$ | $24$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 4]^{2}$ | |
| 2.8.24.77 | $x^{8} - 3$ | $8$ | $1$ | $24$ | $Z_8 : Z_8^\times$ | $[2, 2, 3, 4]^{2}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |