Normalized defining polynomial
\( x^{20} - 100 x^{18} + 4236 x^{16} - 99122 x^{14} + 1400389 x^{12} - 12254584 x^{10} + 65535196 x^{8} - 203748744 x^{6} + 334595163 x^{4} - 244419935 x^{2} + 62710561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29506901376440972086193367040000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 7919^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 7919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{33} a^{10} + \frac{16}{33} a^{8} + \frac{10}{33} a^{6} + \frac{10}{33} a^{4} + \frac{5}{33} a^{2} + \frac{1}{33}$, $\frac{1}{33} a^{11} + \frac{16}{33} a^{9} + \frac{10}{33} a^{7} + \frac{10}{33} a^{5} + \frac{5}{33} a^{3} + \frac{1}{33} a$, $\frac{1}{33} a^{12} - \frac{5}{11} a^{8} + \frac{5}{11} a^{6} + \frac{10}{33} a^{4} - \frac{13}{33} a^{2} - \frac{16}{33}$, $\frac{1}{33} a^{13} - \frac{5}{11} a^{9} + \frac{5}{11} a^{7} + \frac{10}{33} a^{5} - \frac{13}{33} a^{3} - \frac{16}{33} a$, $\frac{1}{33} a^{14} - \frac{3}{11} a^{8} - \frac{5}{33} a^{6} + \frac{5}{33} a^{4} - \frac{7}{33} a^{2} + \frac{5}{11}$, $\frac{1}{33} a^{15} - \frac{3}{11} a^{9} - \frac{5}{33} a^{7} + \frac{5}{33} a^{5} - \frac{7}{33} a^{3} + \frac{5}{11} a$, $\frac{1}{33} a^{16} + \frac{7}{33} a^{8} - \frac{4}{33} a^{6} - \frac{16}{33} a^{4} - \frac{2}{11} a^{2} + \frac{3}{11}$, $\frac{1}{33} a^{17} + \frac{7}{33} a^{9} - \frac{4}{33} a^{7} - \frac{16}{33} a^{5} - \frac{2}{11} a^{3} + \frac{3}{11} a$, $\frac{1}{3558715730545919203440147} a^{18} - \frac{240281210416712785965}{1186238576848639734480049} a^{16} + \frac{839019193099945417852}{107839870622603612225459} a^{14} + \frac{15987352570610446151297}{3558715730545919203440147} a^{12} + \frac{17326881353972157449089}{1186238576848639734480049} a^{10} - \frac{7534647303747564995038}{323519611867810836676377} a^{8} - \frac{1336561416949185243845741}{3558715730545919203440147} a^{6} + \frac{265955001019191967674931}{3558715730545919203440147} a^{4} + \frac{768450394603807973117501}{3558715730545919203440147} a^{2} + \frac{8815070874260138256}{149796511787932786271}$, $\frac{1}{3558715730545919203440147} a^{19} - \frac{240281210416712785965}{1186238576848639734480049} a^{17} + \frac{839019193099945417852}{107839870622603612225459} a^{15} + \frac{15987352570610446151297}{3558715730545919203440147} a^{13} + \frac{17326881353972157449089}{1186238576848639734480049} a^{11} - \frac{7534647303747564995038}{323519611867810836676377} a^{9} - \frac{1336561416949185243845741}{3558715730545919203440147} a^{7} + \frac{265955001019191967674931}{3558715730545919203440147} a^{5} + \frac{768450394603807973117501}{3558715730545919203440147} a^{3} + \frac{8815070874260138256}{149796511787932786271} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1593960647420 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 7919 | Data not computed | ||||||