Normalized defining polynomial
\( x^{20} - 100 x^{18} + 4203 x^{16} - 96966 x^{14} + 1345774 x^{12} - 11586862 x^{10} + 61552481 x^{8} - 193568871 x^{6} + 327924125 x^{4} - 247730077 x^{2} + 62710561 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29506901376440972086193367040000000000=2^{20}\cdot 5^{10}\cdot 11^{16}\cdot 7919^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 7919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{33} a^{10} + \frac{16}{33} a^{8} + \frac{10}{33} a^{6} - \frac{1}{33} a^{4} + \frac{16}{33} a^{2} + \frac{1}{33}$, $\frac{1}{33} a^{11} + \frac{16}{33} a^{9} + \frac{10}{33} a^{7} - \frac{1}{33} a^{5} + \frac{16}{33} a^{3} + \frac{1}{33} a$, $\frac{1}{33} a^{12} - \frac{5}{11} a^{8} + \frac{4}{33} a^{6} - \frac{1}{33} a^{4} + \frac{3}{11} a^{2} - \frac{16}{33}$, $\frac{1}{33} a^{13} - \frac{5}{11} a^{9} + \frac{4}{33} a^{7} - \frac{1}{33} a^{5} + \frac{3}{11} a^{3} - \frac{16}{33} a$, $\frac{1}{33} a^{14} + \frac{13}{33} a^{8} - \frac{16}{33} a^{6} - \frac{2}{11} a^{4} - \frac{7}{33} a^{2} + \frac{5}{11}$, $\frac{1}{33} a^{15} + \frac{13}{33} a^{9} - \frac{16}{33} a^{7} - \frac{2}{11} a^{5} - \frac{7}{33} a^{3} + \frac{5}{11} a$, $\frac{1}{759} a^{16} + \frac{1}{253} a^{14} + \frac{10}{759} a^{12} - \frac{8}{759} a^{10} + \frac{131}{759} a^{8} - \frac{323}{759} a^{6} - \frac{80}{759} a^{4} - \frac{95}{253} a^{2} - \frac{334}{759}$, $\frac{1}{759} a^{17} + \frac{1}{253} a^{15} + \frac{10}{759} a^{13} - \frac{8}{759} a^{11} + \frac{131}{759} a^{9} - \frac{323}{759} a^{7} - \frac{80}{759} a^{5} - \frac{95}{253} a^{3} - \frac{334}{759} a$, $\frac{1}{740214402329577792161721} a^{18} + \frac{162624369721242391505}{740214402329577792161721} a^{16} + \frac{22242313033185022774}{2925748625808607874157} a^{14} + \frac{568294677063212390341}{67292218393597981105611} a^{12} - \frac{3511162072444241851807}{246738134109859264053907} a^{10} - \frac{87731854647913653193535}{740214402329577792161721} a^{8} + \frac{7914766491275980775267}{32183234883894686615727} a^{6} - \frac{79285942530606547790132}{740214402329577792161721} a^{4} - \frac{224669532779998287413462}{740214402329577792161721} a^{2} - \frac{2311803494501207696}{8497565146306096869}$, $\frac{1}{740214402329577792161721} a^{19} + \frac{162624369721242391505}{740214402329577792161721} a^{17} + \frac{22242313033185022774}{2925748625808607874157} a^{15} + \frac{568294677063212390341}{67292218393597981105611} a^{13} - \frac{3511162072444241851807}{246738134109859264053907} a^{11} - \frac{87731854647913653193535}{740214402329577792161721} a^{9} + \frac{7914766491275980775267}{32183234883894686615727} a^{7} - \frac{79285942530606547790132}{740214402329577792161721} a^{5} - \frac{224669532779998287413462}{740214402329577792161721} a^{3} - \frac{2311803494501207696}{8497565146306096869} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1553660170670 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 7919 | Data not computed | ||||||