Normalized defining polynomial
\( x^{20} - 58 x^{18} - 40 x^{17} + 1207 x^{16} + 1424 x^{15} - 11068 x^{14} - 15868 x^{13} + 50037 x^{12} + 80696 x^{11} - 111270 x^{10} - 207804 x^{9} + 100886 x^{8} + 264656 x^{7} + 5488 x^{6} - 142076 x^{5} - 45525 x^{4} + 20760 x^{3} + 14322 x^{2} + 2848 x + 193 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(294780791174314477143981746737381376=2^{40}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{51} a^{18} - \frac{1}{17} a^{17} + \frac{7}{51} a^{16} - \frac{25}{51} a^{15} - \frac{3}{17} a^{14} + \frac{5}{51} a^{12} - \frac{22}{51} a^{11} - \frac{5}{51} a^{10} + \frac{7}{17} a^{9} - \frac{25}{51} a^{8} - \frac{1}{17} a^{7} - \frac{2}{17} a^{6} + \frac{20}{51} a^{5} - \frac{8}{51} a^{4} - \frac{19}{51} a^{3} - \frac{16}{51} a^{2} + \frac{7}{51} a - \frac{8}{51}$, $\frac{1}{68314986019747064309660380017363} a^{19} + \frac{494321827975360074373534721584}{68314986019747064309660380017363} a^{18} - \frac{19867956802244646264303071837192}{68314986019747064309660380017363} a^{17} + \frac{3326798637490786289610198702496}{22771662006582354769886793339121} a^{16} - \frac{27501457160687436845190835442434}{68314986019747064309660380017363} a^{15} + \frac{6026525764204236201509313784957}{22771662006582354769886793339121} a^{14} - \frac{26780527833230974512541366829554}{68314986019747064309660380017363} a^{13} - \frac{19342668932868959072530736197910}{68314986019747064309660380017363} a^{12} + \frac{5614320094828798017841138194854}{22771662006582354769886793339121} a^{11} - \frac{19508936973523320210608532264566}{68314986019747064309660380017363} a^{10} - \frac{13164901698963344437147911569644}{68314986019747064309660380017363} a^{9} + \frac{14169821807253809408587848137153}{68314986019747064309660380017363} a^{8} - \frac{9158408195607207541264457540955}{22771662006582354769886793339121} a^{7} + \frac{17671884092838338162857291899842}{68314986019747064309660380017363} a^{6} - \frac{4957843067271113432487294940063}{22771662006582354769886793339121} a^{5} + \frac{6497829807120413323526560426267}{22771662006582354769886793339121} a^{4} - \frac{8086058394246201839400708439838}{68314986019747064309660380017363} a^{3} + \frac{209280106377839488962604861548}{22771662006582354769886793339121} a^{2} + \frac{29087609035615845380029104111344}{68314986019747064309660380017363} a + \frac{25812869598131733372617218415836}{68314986019747064309660380017363}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 194057079592 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 40 |
| The 13 conjugacy class representatives for $C_5:D_4$ |
| Character table for $C_5:D_4$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.102656.1, 5.5.160801.1, 10.10.847280917741568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 401 | Data not computed | ||||||