Properties

Label 20.20.284...117.1
Degree $20$
Signature $[20, 0]$
Discriminant $2.846\times 10^{35}$
Root discriminant \(59.25\)
Ramified primes $11,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43)
 
gp: K = bnfinit(y^20 - y^19 - 51*y^18 + 48*y^17 + 998*y^16 - 854*y^15 - 9572*y^14 + 7010*y^13 + 48842*y^12 - 27812*y^11 - 139547*y^10 + 54957*y^9 + 224814*y^8 - 51088*y^7 - 194675*y^6 + 16639*y^5 + 78872*y^4 + 1845*y^3 - 10254*y^2 - 1316*y - 43, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43)
 

\( x^{20} - x^{19} - 51 x^{18} + 48 x^{17} + 998 x^{16} - 854 x^{15} - 9572 x^{14} + 7010 x^{13} + \cdots - 43 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $20$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[20, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(284589332775604260722209388186521117\) \(\medspace = 11^{18}\cdot 13^{15}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(59.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}13^{3/4}\approx 59.253080108324006$
Ramified primes:   \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{13}) \)
$\card{ \Gal(K/\Q) }$:  $20$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(143=11\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{143}(64,·)$, $\chi_{143}(1,·)$, $\chi_{143}(8,·)$, $\chi_{143}(73,·)$, $\chi_{143}(138,·)$, $\chi_{143}(12,·)$, $\chi_{143}(14,·)$, $\chi_{143}(18,·)$, $\chi_{143}(83,·)$, $\chi_{143}(21,·)$, $\chi_{143}(25,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(96,·)$, $\chi_{143}(38,·)$, $\chi_{143}(103,·)$, $\chi_{143}(109,·)$, $\chi_{143}(112,·)$, $\chi_{143}(53,·)$, $\chi_{143}(57,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{419}a^{15}-\frac{204}{419}a^{14}+\frac{180}{419}a^{13}-\frac{150}{419}a^{12}+\frac{146}{419}a^{11}-\frac{141}{419}a^{10}+\frac{108}{419}a^{9}-\frac{162}{419}a^{8}+\frac{204}{419}a^{7}-\frac{75}{419}a^{6}-\frac{143}{419}a^{5}-\frac{86}{419}a^{4}+\frac{76}{419}a^{3}+\frac{49}{419}a^{2}+\frac{22}{419}a-\frac{91}{419}$, $\frac{1}{419}a^{16}+\frac{45}{419}a^{14}+\frac{117}{419}a^{13}+\frac{133}{419}a^{12}-\frac{106}{419}a^{11}-\frac{164}{419}a^{10}+\frac{82}{419}a^{9}-\frac{162}{419}a^{8}+\frac{60}{419}a^{7}+\frac{60}{419}a^{6}+\frac{72}{419}a^{5}+\frac{130}{419}a^{4}+\frac{50}{419}a^{3}-\frac{38}{419}a^{2}+\frac{207}{419}a-\frac{128}{419}$, $\frac{1}{419}a^{17}+\frac{79}{419}a^{14}-\frac{6}{419}a^{13}-\frac{60}{419}a^{12}-\frac{30}{419}a^{11}+\frac{142}{419}a^{10}+\frac{6}{419}a^{9}-\frac{192}{419}a^{8}+\frac{98}{419}a^{7}+\frac{95}{419}a^{6}-\frac{139}{419}a^{5}+\frac{149}{419}a^{4}-\frac{106}{419}a^{3}+\frac{97}{419}a^{2}+\frac{139}{419}a-\frac{95}{419}$, $\frac{1}{414391}a^{18}+\frac{24}{414391}a^{17}-\frac{381}{414391}a^{16}-\frac{149}{414391}a^{15}-\frac{34107}{414391}a^{14}+\frac{120746}{414391}a^{13}-\frac{188057}{414391}a^{12}+\frac{138086}{414391}a^{11}-\frac{382}{989}a^{10}+\frac{77747}{414391}a^{9}-\frac{2858}{9637}a^{8}+\frac{71345}{414391}a^{7}+\frac{29063}{414391}a^{6}-\frac{182794}{414391}a^{5}+\frac{179277}{414391}a^{4}+\frac{29472}{414391}a^{3}-\frac{180263}{414391}a^{2}-\frac{156900}{414391}a-\frac{3250}{9637}$, $\frac{1}{55\!\cdots\!49}a^{19}+\frac{20\!\cdots\!01}{55\!\cdots\!49}a^{18}-\frac{13\!\cdots\!92}{55\!\cdots\!49}a^{17}-\frac{62\!\cdots\!29}{55\!\cdots\!49}a^{16}-\frac{24\!\cdots\!70}{55\!\cdots\!49}a^{15}+\frac{24\!\cdots\!06}{55\!\cdots\!49}a^{14}-\frac{26\!\cdots\!70}{55\!\cdots\!49}a^{13}-\frac{11\!\cdots\!52}{23\!\cdots\!63}a^{12}+\frac{21\!\cdots\!66}{55\!\cdots\!49}a^{11}-\frac{53\!\cdots\!68}{23\!\cdots\!63}a^{10}-\frac{21\!\cdots\!27}{55\!\cdots\!49}a^{9}-\frac{40\!\cdots\!83}{55\!\cdots\!49}a^{8}+\frac{63\!\cdots\!91}{55\!\cdots\!49}a^{7}-\frac{23\!\cdots\!11}{55\!\cdots\!49}a^{6}+\frac{20\!\cdots\!13}{55\!\cdots\!49}a^{5}+\frac{24\!\cdots\!55}{55\!\cdots\!49}a^{4}+\frac{27\!\cdots\!63}{55\!\cdots\!49}a^{3}-\frac{12\!\cdots\!57}{55\!\cdots\!49}a^{2}+\frac{14\!\cdots\!37}{55\!\cdots\!49}a+\frac{54\!\cdots\!17}{12\!\cdots\!43}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $19$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{97\!\cdots\!54}{55\!\cdots\!49}a^{19}-\frac{10\!\cdots\!64}{55\!\cdots\!49}a^{18}-\frac{49\!\cdots\!49}{55\!\cdots\!49}a^{17}+\frac{48\!\cdots\!53}{55\!\cdots\!49}a^{16}+\frac{96\!\cdots\!37}{55\!\cdots\!49}a^{15}-\frac{87\!\cdots\!90}{55\!\cdots\!49}a^{14}-\frac{92\!\cdots\!16}{55\!\cdots\!49}a^{13}+\frac{72\!\cdots\!40}{55\!\cdots\!49}a^{12}+\frac{47\!\cdots\!64}{55\!\cdots\!49}a^{11}-\frac{29\!\cdots\!93}{55\!\cdots\!49}a^{10}-\frac{13\!\cdots\!49}{55\!\cdots\!49}a^{9}+\frac{61\!\cdots\!57}{55\!\cdots\!49}a^{8}+\frac{92\!\cdots\!02}{23\!\cdots\!63}a^{7}-\frac{63\!\cdots\!23}{55\!\cdots\!49}a^{6}-\frac{18\!\cdots\!05}{55\!\cdots\!49}a^{5}+\frac{28\!\cdots\!68}{55\!\cdots\!49}a^{4}+\frac{71\!\cdots\!21}{55\!\cdots\!49}a^{3}-\frac{34\!\cdots\!72}{55\!\cdots\!49}a^{2}-\frac{90\!\cdots\!38}{55\!\cdots\!49}a-\frac{12\!\cdots\!60}{12\!\cdots\!43}$, $\frac{24\!\cdots\!55}{55\!\cdots\!49}a^{19}+\frac{70\!\cdots\!85}{55\!\cdots\!49}a^{18}-\frac{14\!\cdots\!26}{55\!\cdots\!49}a^{17}-\frac{34\!\cdots\!48}{55\!\cdots\!49}a^{16}+\frac{81\!\cdots\!32}{12\!\cdots\!43}a^{15}+\frac{64\!\cdots\!89}{55\!\cdots\!49}a^{14}-\frac{43\!\cdots\!15}{55\!\cdots\!49}a^{13}-\frac{57\!\cdots\!09}{55\!\cdots\!49}a^{12}+\frac{67\!\cdots\!80}{12\!\cdots\!43}a^{11}+\frac{25\!\cdots\!10}{55\!\cdots\!49}a^{10}-\frac{10\!\cdots\!41}{55\!\cdots\!49}a^{9}-\frac{63\!\cdots\!36}{55\!\cdots\!49}a^{8}+\frac{93\!\cdots\!79}{23\!\cdots\!63}a^{7}+\frac{85\!\cdots\!48}{55\!\cdots\!49}a^{6}-\frac{22\!\cdots\!86}{55\!\cdots\!49}a^{5}-\frac{57\!\cdots\!67}{55\!\cdots\!49}a^{4}+\frac{10\!\cdots\!82}{55\!\cdots\!49}a^{3}+\frac{14\!\cdots\!80}{55\!\cdots\!49}a^{2}-\frac{16\!\cdots\!68}{55\!\cdots\!49}a-\frac{17\!\cdots\!19}{12\!\cdots\!43}$, $\frac{99\!\cdots\!09}{55\!\cdots\!49}a^{19}-\frac{94\!\cdots\!79}{55\!\cdots\!49}a^{18}-\frac{51\!\cdots\!75}{55\!\cdots\!49}a^{17}+\frac{45\!\cdots\!05}{55\!\cdots\!49}a^{16}+\frac{10\!\cdots\!13}{55\!\cdots\!49}a^{15}-\frac{80\!\cdots\!01}{55\!\cdots\!49}a^{14}-\frac{96\!\cdots\!31}{55\!\cdots\!49}a^{13}+\frac{66\!\cdots\!31}{55\!\cdots\!49}a^{12}+\frac{49\!\cdots\!04}{55\!\cdots\!49}a^{11}-\frac{26\!\cdots\!83}{55\!\cdots\!49}a^{10}-\frac{33\!\cdots\!30}{12\!\cdots\!43}a^{9}+\frac{54\!\cdots\!21}{55\!\cdots\!49}a^{8}+\frac{10\!\cdots\!81}{23\!\cdots\!63}a^{7}-\frac{54\!\cdots\!75}{55\!\cdots\!49}a^{6}-\frac{20\!\cdots\!91}{55\!\cdots\!49}a^{5}+\frac{22\!\cdots\!01}{55\!\cdots\!49}a^{4}+\frac{81\!\cdots\!03}{55\!\cdots\!49}a^{3}-\frac{20\!\cdots\!92}{55\!\cdots\!49}a^{2}-\frac{24\!\cdots\!42}{12\!\cdots\!43}a-\frac{16\!\cdots\!22}{12\!\cdots\!43}$, $\frac{64\!\cdots\!08}{55\!\cdots\!49}a^{19}-\frac{88\!\cdots\!59}{55\!\cdots\!49}a^{18}-\frac{32\!\cdots\!60}{55\!\cdots\!49}a^{17}+\frac{42\!\cdots\!84}{55\!\cdots\!49}a^{16}+\frac{61\!\cdots\!37}{55\!\cdots\!49}a^{15}-\frac{76\!\cdots\!14}{55\!\cdots\!49}a^{14}-\frac{57\!\cdots\!45}{55\!\cdots\!49}a^{13}+\frac{64\!\cdots\!81}{55\!\cdots\!49}a^{12}+\frac{27\!\cdots\!48}{55\!\cdots\!49}a^{11}-\frac{26\!\cdots\!84}{55\!\cdots\!49}a^{10}-\frac{75\!\cdots\!40}{55\!\cdots\!49}a^{9}+\frac{55\!\cdots\!29}{55\!\cdots\!49}a^{8}+\frac{50\!\cdots\!35}{23\!\cdots\!63}a^{7}-\frac{57\!\cdots\!60}{55\!\cdots\!49}a^{6}-\frac{95\!\cdots\!22}{55\!\cdots\!49}a^{5}+\frac{26\!\cdots\!45}{55\!\cdots\!49}a^{4}+\frac{37\!\cdots\!01}{55\!\cdots\!49}a^{3}-\frac{29\!\cdots\!80}{55\!\cdots\!49}a^{2}-\frac{50\!\cdots\!32}{55\!\cdots\!49}a-\frac{81\!\cdots\!29}{12\!\cdots\!43}$, $\frac{27\!\cdots\!77}{55\!\cdots\!49}a^{19}-\frac{26\!\cdots\!85}{55\!\cdots\!49}a^{18}-\frac{13\!\cdots\!95}{55\!\cdots\!49}a^{17}+\frac{12\!\cdots\!53}{55\!\cdots\!49}a^{16}+\frac{27\!\cdots\!71}{55\!\cdots\!49}a^{15}-\frac{22\!\cdots\!62}{55\!\cdots\!49}a^{14}-\frac{26\!\cdots\!28}{55\!\cdots\!49}a^{13}+\frac{19\!\cdots\!83}{55\!\cdots\!49}a^{12}+\frac{13\!\cdots\!00}{55\!\cdots\!49}a^{11}-\frac{77\!\cdots\!98}{55\!\cdots\!49}a^{10}-\frac{38\!\cdots\!16}{55\!\cdots\!49}a^{9}+\frac{15\!\cdots\!96}{55\!\cdots\!49}a^{8}+\frac{27\!\cdots\!07}{23\!\cdots\!63}a^{7}-\frac{16\!\cdots\!12}{55\!\cdots\!49}a^{6}-\frac{54\!\cdots\!60}{55\!\cdots\!49}a^{5}+\frac{73\!\cdots\!53}{55\!\cdots\!49}a^{4}+\frac{22\!\cdots\!37}{55\!\cdots\!49}a^{3}-\frac{86\!\cdots\!04}{55\!\cdots\!49}a^{2}-\frac{28\!\cdots\!62}{55\!\cdots\!49}a-\frac{40\!\cdots\!19}{12\!\cdots\!43}$, $\frac{16\!\cdots\!17}{55\!\cdots\!49}a^{19}-\frac{18\!\cdots\!38}{55\!\cdots\!49}a^{18}-\frac{83\!\cdots\!35}{55\!\cdots\!49}a^{17}+\frac{88\!\cdots\!89}{55\!\cdots\!49}a^{16}+\frac{16\!\cdots\!50}{55\!\cdots\!49}a^{15}-\frac{15\!\cdots\!15}{55\!\cdots\!49}a^{14}-\frac{15\!\cdots\!76}{55\!\cdots\!49}a^{13}+\frac{13\!\cdots\!12}{55\!\cdots\!49}a^{12}+\frac{77\!\cdots\!52}{55\!\cdots\!49}a^{11}-\frac{53\!\cdots\!67}{55\!\cdots\!49}a^{10}-\frac{21\!\cdots\!30}{55\!\cdots\!49}a^{9}+\frac{10\!\cdots\!50}{55\!\cdots\!49}a^{8}+\frac{15\!\cdots\!16}{23\!\cdots\!63}a^{7}-\frac{11\!\cdots\!35}{55\!\cdots\!49}a^{6}-\frac{29\!\cdots\!13}{55\!\cdots\!49}a^{5}+\frac{48\!\cdots\!46}{55\!\cdots\!49}a^{4}+\frac{11\!\cdots\!04}{55\!\cdots\!49}a^{3}-\frac{49\!\cdots\!72}{55\!\cdots\!49}a^{2}-\frac{15\!\cdots\!87}{55\!\cdots\!49}a-\frac{24\!\cdots\!51}{12\!\cdots\!43}$, $\frac{18\!\cdots\!27}{55\!\cdots\!49}a^{19}-\frac{45\!\cdots\!48}{12\!\cdots\!43}a^{18}-\frac{95\!\cdots\!58}{55\!\cdots\!49}a^{17}+\frac{93\!\cdots\!98}{55\!\cdots\!49}a^{16}+\frac{18\!\cdots\!64}{55\!\cdots\!49}a^{15}-\frac{16\!\cdots\!94}{55\!\cdots\!49}a^{14}-\frac{17\!\cdots\!48}{55\!\cdots\!49}a^{13}+\frac{13\!\cdots\!43}{55\!\cdots\!49}a^{12}+\frac{91\!\cdots\!86}{55\!\cdots\!49}a^{11}-\frac{54\!\cdots\!65}{55\!\cdots\!49}a^{10}-\frac{26\!\cdots\!04}{55\!\cdots\!49}a^{9}+\frac{11\!\cdots\!44}{55\!\cdots\!49}a^{8}+\frac{18\!\cdots\!11}{23\!\cdots\!63}a^{7}-\frac{10\!\cdots\!93}{55\!\cdots\!49}a^{6}-\frac{37\!\cdots\!09}{55\!\cdots\!49}a^{5}+\frac{46\!\cdots\!61}{55\!\cdots\!49}a^{4}+\frac{15\!\cdots\!44}{55\!\cdots\!49}a^{3}-\frac{51\!\cdots\!99}{55\!\cdots\!49}a^{2}-\frac{20\!\cdots\!74}{55\!\cdots\!49}a-\frac{28\!\cdots\!43}{12\!\cdots\!43}$, $\frac{14\!\cdots\!72}{55\!\cdots\!49}a^{19}-\frac{18\!\cdots\!28}{55\!\cdots\!49}a^{18}-\frac{72\!\cdots\!13}{55\!\cdots\!49}a^{17}+\frac{90\!\cdots\!67}{55\!\cdots\!49}a^{16}+\frac{14\!\cdots\!34}{55\!\cdots\!49}a^{15}-\frac{16\!\cdots\!62}{55\!\cdots\!49}a^{14}-\frac{13\!\cdots\!56}{55\!\cdots\!49}a^{13}+\frac{13\!\cdots\!21}{55\!\cdots\!49}a^{12}+\frac{65\!\cdots\!27}{55\!\cdots\!49}a^{11}-\frac{57\!\cdots\!23}{55\!\cdots\!49}a^{10}-\frac{17\!\cdots\!35}{55\!\cdots\!49}a^{9}+\frac{12\!\cdots\!61}{55\!\cdots\!49}a^{8}+\frac{12\!\cdots\!32}{23\!\cdots\!63}a^{7}-\frac{13\!\cdots\!43}{55\!\cdots\!49}a^{6}-\frac{22\!\cdots\!85}{55\!\cdots\!49}a^{5}+\frac{62\!\cdots\!23}{55\!\cdots\!49}a^{4}+\frac{88\!\cdots\!58}{55\!\cdots\!49}a^{3}-\frac{81\!\cdots\!24}{55\!\cdots\!49}a^{2}-\frac{11\!\cdots\!19}{55\!\cdots\!49}a-\frac{18\!\cdots\!87}{12\!\cdots\!43}$, $\frac{49\!\cdots\!86}{55\!\cdots\!49}a^{19}-\frac{37\!\cdots\!27}{55\!\cdots\!49}a^{18}-\frac{25\!\cdots\!71}{55\!\cdots\!49}a^{17}+\frac{18\!\cdots\!71}{55\!\cdots\!49}a^{16}+\frac{51\!\cdots\!26}{55\!\cdots\!49}a^{15}-\frac{32\!\cdots\!29}{55\!\cdots\!49}a^{14}-\frac{50\!\cdots\!59}{55\!\cdots\!49}a^{13}+\frac{26\!\cdots\!13}{55\!\cdots\!49}a^{12}+\frac{26\!\cdots\!97}{55\!\cdots\!49}a^{11}-\frac{10\!\cdots\!58}{55\!\cdots\!49}a^{10}-\frac{79\!\cdots\!51}{55\!\cdots\!49}a^{9}+\frac{22\!\cdots\!94}{55\!\cdots\!49}a^{8}+\frac{13\!\cdots\!42}{55\!\cdots\!41}a^{7}-\frac{24\!\cdots\!66}{55\!\cdots\!49}a^{6}-\frac{12\!\cdots\!61}{55\!\cdots\!49}a^{5}+\frac{12\!\cdots\!14}{55\!\cdots\!49}a^{4}+\frac{51\!\cdots\!24}{55\!\cdots\!49}a^{3}-\frac{17\!\cdots\!32}{55\!\cdots\!49}a^{2}-\frac{68\!\cdots\!69}{55\!\cdots\!49}a-\frac{92\!\cdots\!99}{12\!\cdots\!43}$, $\frac{54\!\cdots\!54}{55\!\cdots\!49}a^{19}-\frac{63\!\cdots\!17}{55\!\cdots\!49}a^{18}-\frac{27\!\cdots\!25}{55\!\cdots\!49}a^{17}+\frac{30\!\cdots\!62}{55\!\cdots\!49}a^{16}+\frac{52\!\cdots\!28}{55\!\cdots\!49}a^{15}-\frac{53\!\cdots\!05}{55\!\cdots\!49}a^{14}-\frac{48\!\cdots\!18}{55\!\cdots\!49}a^{13}+\frac{43\!\cdots\!17}{55\!\cdots\!49}a^{12}+\frac{23\!\cdots\!14}{55\!\cdots\!49}a^{11}-\frac{17\!\cdots\!47}{55\!\cdots\!49}a^{10}-\frac{61\!\cdots\!10}{55\!\cdots\!49}a^{9}+\frac{33\!\cdots\!14}{55\!\cdots\!49}a^{8}+\frac{39\!\cdots\!43}{23\!\cdots\!63}a^{7}-\frac{31\!\cdots\!54}{55\!\cdots\!49}a^{6}-\frac{67\!\cdots\!49}{55\!\cdots\!49}a^{5}+\frac{11\!\cdots\!78}{55\!\cdots\!49}a^{4}+\frac{21\!\cdots\!96}{55\!\cdots\!49}a^{3}-\frac{74\!\cdots\!15}{55\!\cdots\!49}a^{2}-\frac{13\!\cdots\!36}{55\!\cdots\!49}a-\frac{17\!\cdots\!03}{12\!\cdots\!43}$, $\frac{16\!\cdots\!00}{55\!\cdots\!49}a^{19}-\frac{25\!\cdots\!78}{55\!\cdots\!49}a^{18}-\frac{83\!\cdots\!23}{55\!\cdots\!49}a^{17}+\frac{12\!\cdots\!95}{55\!\cdots\!49}a^{16}+\frac{15\!\cdots\!56}{55\!\cdots\!49}a^{15}-\frac{22\!\cdots\!55}{55\!\cdots\!49}a^{14}-\frac{61\!\cdots\!14}{23\!\cdots\!63}a^{13}+\frac{18\!\cdots\!40}{55\!\cdots\!49}a^{12}+\frac{65\!\cdots\!61}{55\!\cdots\!49}a^{11}-\frac{73\!\cdots\!95}{55\!\cdots\!49}a^{10}-\frac{16\!\cdots\!66}{55\!\cdots\!49}a^{9}+\frac{14\!\cdots\!07}{55\!\cdots\!49}a^{8}+\frac{23\!\cdots\!26}{55\!\cdots\!49}a^{7}-\frac{14\!\cdots\!96}{55\!\cdots\!49}a^{6}-\frac{16\!\cdots\!25}{55\!\cdots\!49}a^{5}+\frac{53\!\cdots\!28}{55\!\cdots\!49}a^{4}+\frac{55\!\cdots\!59}{55\!\cdots\!49}a^{3}-\frac{29\!\cdots\!07}{55\!\cdots\!49}a^{2}-\frac{52\!\cdots\!44}{55\!\cdots\!49}a-\frac{77\!\cdots\!54}{12\!\cdots\!43}$, $\frac{19\!\cdots\!73}{55\!\cdots\!49}a^{19}-\frac{21\!\cdots\!88}{55\!\cdots\!49}a^{18}-\frac{99\!\cdots\!15}{55\!\cdots\!49}a^{17}+\frac{10\!\cdots\!43}{55\!\cdots\!49}a^{16}+\frac{84\!\cdots\!93}{23\!\cdots\!63}a^{15}-\frac{18\!\cdots\!69}{55\!\cdots\!49}a^{14}-\frac{18\!\cdots\!93}{55\!\cdots\!49}a^{13}+\frac{15\!\cdots\!40}{55\!\cdots\!49}a^{12}+\frac{40\!\cdots\!80}{23\!\cdots\!63}a^{11}-\frac{64\!\cdots\!75}{55\!\cdots\!49}a^{10}-\frac{26\!\cdots\!88}{55\!\cdots\!49}a^{9}+\frac{13\!\cdots\!42}{55\!\cdots\!49}a^{8}+\frac{42\!\cdots\!82}{55\!\cdots\!49}a^{7}-\frac{59\!\cdots\!87}{23\!\cdots\!63}a^{6}-\frac{36\!\cdots\!84}{55\!\cdots\!49}a^{5}+\frac{61\!\cdots\!85}{55\!\cdots\!49}a^{4}+\frac{15\!\cdots\!09}{55\!\cdots\!49}a^{3}-\frac{70\!\cdots\!18}{55\!\cdots\!49}a^{2}-\frac{20\!\cdots\!38}{55\!\cdots\!49}a-\frac{28\!\cdots\!24}{12\!\cdots\!43}$, $\frac{13\!\cdots\!77}{55\!\cdots\!49}a^{19}-\frac{21\!\cdots\!54}{55\!\cdots\!49}a^{18}-\frac{65\!\cdots\!86}{55\!\cdots\!49}a^{17}+\frac{10\!\cdots\!72}{55\!\cdots\!49}a^{16}+\frac{12\!\cdots\!48}{55\!\cdots\!49}a^{15}-\frac{18\!\cdots\!57}{55\!\cdots\!49}a^{14}-\frac{11\!\cdots\!05}{55\!\cdots\!49}a^{13}+\frac{65\!\cdots\!82}{23\!\cdots\!63}a^{12}+\frac{52\!\cdots\!84}{55\!\cdots\!49}a^{11}-\frac{26\!\cdots\!94}{23\!\cdots\!63}a^{10}-\frac{13\!\cdots\!25}{55\!\cdots\!49}a^{9}+\frac{12\!\cdots\!34}{55\!\cdots\!49}a^{8}+\frac{19\!\cdots\!67}{55\!\cdots\!49}a^{7}-\frac{12\!\cdots\!39}{55\!\cdots\!49}a^{6}-\frac{16\!\cdots\!02}{55\!\cdots\!49}a^{5}+\frac{55\!\cdots\!48}{55\!\cdots\!49}a^{4}+\frac{62\!\cdots\!57}{55\!\cdots\!49}a^{3}-\frac{68\!\cdots\!54}{55\!\cdots\!49}a^{2}-\frac{82\!\cdots\!93}{55\!\cdots\!49}a-\frac{11\!\cdots\!42}{12\!\cdots\!43}$, $\frac{25\!\cdots\!10}{55\!\cdots\!49}a^{19}-\frac{32\!\cdots\!04}{55\!\cdots\!49}a^{18}-\frac{53\!\cdots\!12}{23\!\cdots\!63}a^{17}+\frac{15\!\cdots\!15}{55\!\cdots\!49}a^{16}+\frac{23\!\cdots\!31}{55\!\cdots\!49}a^{15}-\frac{26\!\cdots\!49}{55\!\cdots\!49}a^{14}-\frac{20\!\cdots\!42}{55\!\cdots\!49}a^{13}+\frac{20\!\cdots\!15}{55\!\cdots\!49}a^{12}+\frac{91\!\cdots\!39}{55\!\cdots\!49}a^{11}-\frac{71\!\cdots\!53}{55\!\cdots\!49}a^{10}-\frac{21\!\cdots\!67}{55\!\cdots\!49}a^{9}+\frac{11\!\cdots\!61}{55\!\cdots\!49}a^{8}+\frac{25\!\cdots\!16}{55\!\cdots\!49}a^{7}-\frac{59\!\cdots\!73}{55\!\cdots\!49}a^{6}-\frac{13\!\cdots\!99}{55\!\cdots\!49}a^{5}-\frac{14\!\cdots\!75}{55\!\cdots\!49}a^{4}+\frac{13\!\cdots\!68}{55\!\cdots\!49}a^{3}+\frac{10\!\cdots\!64}{55\!\cdots\!49}a^{2}+\frac{31\!\cdots\!14}{55\!\cdots\!49}a-\frac{61\!\cdots\!80}{12\!\cdots\!43}$, $\frac{77\!\cdots\!57}{55\!\cdots\!49}a^{19}-\frac{28\!\cdots\!43}{55\!\cdots\!49}a^{18}-\frac{34\!\cdots\!81}{55\!\cdots\!49}a^{17}+\frac{13\!\cdots\!25}{55\!\cdots\!49}a^{16}+\frac{52\!\cdots\!29}{55\!\cdots\!49}a^{15}-\frac{24\!\cdots\!72}{55\!\cdots\!49}a^{14}-\frac{30\!\cdots\!93}{55\!\cdots\!49}a^{13}+\frac{20\!\cdots\!45}{55\!\cdots\!49}a^{12}+\frac{16\!\cdots\!56}{55\!\cdots\!49}a^{11}-\frac{81\!\cdots\!39}{55\!\cdots\!49}a^{10}+\frac{16\!\cdots\!08}{23\!\cdots\!63}a^{9}+\frac{16\!\cdots\!39}{55\!\cdots\!49}a^{8}-\frac{12\!\cdots\!91}{55\!\cdots\!49}a^{7}-\frac{17\!\cdots\!84}{55\!\cdots\!49}a^{6}+\frac{15\!\cdots\!32}{55\!\cdots\!49}a^{5}+\frac{37\!\cdots\!33}{23\!\cdots\!63}a^{4}-\frac{72\!\cdots\!57}{55\!\cdots\!49}a^{3}-\frac{32\!\cdots\!89}{12\!\cdots\!43}a^{2}+\frac{87\!\cdots\!48}{55\!\cdots\!49}a+\frac{29\!\cdots\!30}{12\!\cdots\!43}$, $\frac{17\!\cdots\!37}{55\!\cdots\!49}a^{19}+\frac{16\!\cdots\!39}{55\!\cdots\!49}a^{18}-\frac{42\!\cdots\!78}{23\!\cdots\!63}a^{17}-\frac{79\!\cdots\!86}{55\!\cdots\!49}a^{16}+\frac{21\!\cdots\!71}{55\!\cdots\!49}a^{15}+\frac{14\!\cdots\!60}{55\!\cdots\!49}a^{14}-\frac{23\!\cdots\!20}{55\!\cdots\!49}a^{13}-\frac{12\!\cdots\!05}{55\!\cdots\!49}a^{12}+\frac{14\!\cdots\!22}{55\!\cdots\!49}a^{11}+\frac{51\!\cdots\!85}{55\!\cdots\!49}a^{10}-\frac{11\!\cdots\!83}{12\!\cdots\!43}a^{9}-\frac{10\!\cdots\!49}{55\!\cdots\!49}a^{8}+\frac{87\!\cdots\!01}{55\!\cdots\!49}a^{7}+\frac{11\!\cdots\!05}{55\!\cdots\!49}a^{6}-\frac{83\!\cdots\!73}{55\!\cdots\!49}a^{5}-\frac{51\!\cdots\!76}{55\!\cdots\!49}a^{4}+\frac{36\!\cdots\!95}{55\!\cdots\!49}a^{3}+\frac{69\!\cdots\!49}{55\!\cdots\!49}a^{2}-\frac{11\!\cdots\!70}{12\!\cdots\!43}a-\frac{75\!\cdots\!85}{12\!\cdots\!43}$, $\frac{73\!\cdots\!88}{12\!\cdots\!43}a^{19}-\frac{34\!\cdots\!96}{55\!\cdots\!49}a^{18}-\frac{16\!\cdots\!17}{55\!\cdots\!49}a^{17}+\frac{16\!\cdots\!67}{55\!\cdots\!49}a^{16}+\frac{31\!\cdots\!03}{55\!\cdots\!49}a^{15}-\frac{29\!\cdots\!10}{55\!\cdots\!49}a^{14}-\frac{29\!\cdots\!82}{55\!\cdots\!49}a^{13}+\frac{24\!\cdots\!22}{55\!\cdots\!49}a^{12}+\frac{15\!\cdots\!96}{55\!\cdots\!49}a^{11}-\frac{10\!\cdots\!94}{55\!\cdots\!49}a^{10}-\frac{42\!\cdots\!10}{55\!\cdots\!49}a^{9}+\frac{48\!\cdots\!08}{12\!\cdots\!43}a^{8}+\frac{68\!\cdots\!67}{55\!\cdots\!49}a^{7}-\frac{21\!\cdots\!36}{55\!\cdots\!49}a^{6}-\frac{59\!\cdots\!47}{55\!\cdots\!49}a^{5}+\frac{97\!\cdots\!80}{55\!\cdots\!49}a^{4}+\frac{24\!\cdots\!07}{55\!\cdots\!49}a^{3}-\frac{11\!\cdots\!69}{55\!\cdots\!49}a^{2}-\frac{31\!\cdots\!46}{55\!\cdots\!49}a-\frac{43\!\cdots\!41}{12\!\cdots\!43}$, $\frac{54\!\cdots\!30}{55\!\cdots\!49}a^{19}-\frac{80\!\cdots\!11}{55\!\cdots\!49}a^{18}-\frac{27\!\cdots\!40}{55\!\cdots\!49}a^{17}+\frac{38\!\cdots\!89}{55\!\cdots\!49}a^{16}+\frac{51\!\cdots\!16}{55\!\cdots\!49}a^{15}-\frac{69\!\cdots\!69}{55\!\cdots\!49}a^{14}-\frac{46\!\cdots\!32}{55\!\cdots\!49}a^{13}+\frac{57\!\cdots\!59}{55\!\cdots\!49}a^{12}+\frac{21\!\cdots\!63}{55\!\cdots\!49}a^{11}-\frac{22\!\cdots\!52}{55\!\cdots\!49}a^{10}-\frac{57\!\cdots\!44}{55\!\cdots\!49}a^{9}+\frac{46\!\cdots\!90}{55\!\cdots\!49}a^{8}+\frac{83\!\cdots\!19}{55\!\cdots\!49}a^{7}-\frac{46\!\cdots\!63}{55\!\cdots\!49}a^{6}-\frac{67\!\cdots\!61}{55\!\cdots\!49}a^{5}+\frac{19\!\cdots\!48}{55\!\cdots\!49}a^{4}+\frac{29\!\cdots\!99}{55\!\cdots\!49}a^{3}-\frac{25\!\cdots\!57}{55\!\cdots\!49}a^{2}-\frac{63\!\cdots\!00}{55\!\cdots\!49}a-\frac{94\!\cdots\!06}{12\!\cdots\!43}$, $\frac{18\!\cdots\!61}{55\!\cdots\!49}a^{19}-\frac{15\!\cdots\!73}{55\!\cdots\!49}a^{18}-\frac{96\!\cdots\!91}{55\!\cdots\!49}a^{17}+\frac{74\!\cdots\!15}{55\!\cdots\!49}a^{16}+\frac{18\!\cdots\!89}{55\!\cdots\!49}a^{15}-\frac{13\!\cdots\!09}{55\!\cdots\!49}a^{14}-\frac{18\!\cdots\!80}{55\!\cdots\!49}a^{13}+\frac{10\!\cdots\!82}{55\!\cdots\!49}a^{12}+\frac{92\!\cdots\!72}{55\!\cdots\!49}a^{11}-\frac{42\!\cdots\!12}{55\!\cdots\!49}a^{10}-\frac{26\!\cdots\!41}{55\!\cdots\!49}a^{9}+\frac{85\!\cdots\!37}{55\!\cdots\!49}a^{8}+\frac{40\!\cdots\!36}{55\!\cdots\!49}a^{7}-\frac{87\!\cdots\!09}{55\!\cdots\!49}a^{6}-\frac{32\!\cdots\!41}{55\!\cdots\!49}a^{5}+\frac{45\!\cdots\!34}{55\!\cdots\!49}a^{4}+\frac{11\!\cdots\!75}{55\!\cdots\!49}a^{3}-\frac{11\!\cdots\!94}{55\!\cdots\!49}a^{2}-\frac{82\!\cdots\!28}{55\!\cdots\!49}a-\frac{41\!\cdots\!27}{55\!\cdots\!41}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 168224843913 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{20}\cdot(2\pi)^{0}\cdot 168224843913 \cdot 1}{2\cdot\sqrt{284589332775604260722209388186521117}}\cr\approx \mathstrut & 0.165329648688129 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^20 - x^19 - 51*x^18 + 48*x^17 + 998*x^16 - 854*x^15 - 9572*x^14 + 7010*x^13 + 48842*x^12 - 27812*x^11 - 139547*x^10 + 54957*x^9 + 224814*x^8 - 51088*x^7 - 194675*x^6 + 16639*x^5 + 78872*x^4 + 1845*x^3 - 10254*x^2 - 1316*x - 43);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{20}$ (as 20T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{13}) \), 4.4.265837.1, \(\Q(\zeta_{11})^+\), 10.10.79589952003133.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $20$ ${\href{/padicField/3.5.0.1}{5} }^{4}$ $20$ $20$ R R ${\href{/padicField/17.5.0.1}{5} }^{4}$ $20$ ${\href{/padicField/23.2.0.1}{2} }^{10}$ ${\href{/padicField/29.10.0.1}{10} }^{2}$ $20$ $20$ $20$ ${\href{/padicField/43.1.0.1}{1} }^{20}$ $20$ ${\href{/padicField/53.5.0.1}{5} }^{4}$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.20.18.8$x^{20} - 704 x^{10} - 121$$10$$2$$18$20T1$[\ ]_{10}^{2}$
\(13\) Copy content Toggle raw display 13.20.15.1$x^{20} + 1352 x^{12} + 456976 x^{4} + 44926453$$4$$5$$15$20T1$[\ ]_{4}^{5}$