Normalized defining polynomial
\( x^{20} - x^{19} - 51 x^{18} + 48 x^{17} + 998 x^{16} - 854 x^{15} - 9572 x^{14} + 7010 x^{13} + 48842 x^{12} - 27812 x^{11} - 139547 x^{10} + 54957 x^{9} + 224814 x^{8} - 51088 x^{7} - 194675 x^{6} + 16639 x^{5} + 78872 x^{4} + 1845 x^{3} - 10254 x^{2} - 1316 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(284589332775604260722209388186521117=11^{18}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $59.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(143=11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{143}(64,·)$, $\chi_{143}(1,·)$, $\chi_{143}(8,·)$, $\chi_{143}(73,·)$, $\chi_{143}(138,·)$, $\chi_{143}(12,·)$, $\chi_{143}(14,·)$, $\chi_{143}(18,·)$, $\chi_{143}(83,·)$, $\chi_{143}(21,·)$, $\chi_{143}(25,·)$, $\chi_{143}(27,·)$, $\chi_{143}(92,·)$, $\chi_{143}(96,·)$, $\chi_{143}(38,·)$, $\chi_{143}(103,·)$, $\chi_{143}(109,·)$, $\chi_{143}(112,·)$, $\chi_{143}(53,·)$, $\chi_{143}(57,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{419} a^{15} - \frac{204}{419} a^{14} + \frac{180}{419} a^{13} - \frac{150}{419} a^{12} + \frac{146}{419} a^{11} - \frac{141}{419} a^{10} + \frac{108}{419} a^{9} - \frac{162}{419} a^{8} + \frac{204}{419} a^{7} - \frac{75}{419} a^{6} - \frac{143}{419} a^{5} - \frac{86}{419} a^{4} + \frac{76}{419} a^{3} + \frac{49}{419} a^{2} + \frac{22}{419} a - \frac{91}{419}$, $\frac{1}{419} a^{16} + \frac{45}{419} a^{14} + \frac{117}{419} a^{13} + \frac{133}{419} a^{12} - \frac{106}{419} a^{11} - \frac{164}{419} a^{10} + \frac{82}{419} a^{9} - \frac{162}{419} a^{8} + \frac{60}{419} a^{7} + \frac{60}{419} a^{6} + \frac{72}{419} a^{5} + \frac{130}{419} a^{4} + \frac{50}{419} a^{3} - \frac{38}{419} a^{2} + \frac{207}{419} a - \frac{128}{419}$, $\frac{1}{419} a^{17} + \frac{79}{419} a^{14} - \frac{6}{419} a^{13} - \frac{60}{419} a^{12} - \frac{30}{419} a^{11} + \frac{142}{419} a^{10} + \frac{6}{419} a^{9} - \frac{192}{419} a^{8} + \frac{98}{419} a^{7} + \frac{95}{419} a^{6} - \frac{139}{419} a^{5} + \frac{149}{419} a^{4} - \frac{106}{419} a^{3} + \frac{97}{419} a^{2} + \frac{139}{419} a - \frac{95}{419}$, $\frac{1}{414391} a^{18} + \frac{24}{414391} a^{17} - \frac{381}{414391} a^{16} - \frac{149}{414391} a^{15} - \frac{34107}{414391} a^{14} + \frac{120746}{414391} a^{13} - \frac{188057}{414391} a^{12} + \frac{138086}{414391} a^{11} - \frac{382}{989} a^{10} + \frac{77747}{414391} a^{9} - \frac{2858}{9637} a^{8} + \frac{71345}{414391} a^{7} + \frac{29063}{414391} a^{6} - \frac{182794}{414391} a^{5} + \frac{179277}{414391} a^{4} + \frac{29472}{414391} a^{3} - \frac{180263}{414391} a^{2} - \frac{156900}{414391} a - \frac{3250}{9637}$, $\frac{1}{551707846063147927851149} a^{19} + \frac{206805579424702201}{551707846063147927851149} a^{18} - \frac{137915729889006927592}{551707846063147927851149} a^{17} - \frac{62902355965607763829}{551707846063147927851149} a^{16} - \frac{249888182928191035170}{551707846063147927851149} a^{15} + \frac{241947575607220123805806}{551707846063147927851149} a^{14} - \frac{264229343149481093409270}{551707846063147927851149} a^{13} - \frac{11468738457150148998352}{23987297654919475123963} a^{12} + \frac{218288813186859073602766}{551707846063147927851149} a^{11} - \frac{5321952713506791425168}{23987297654919475123963} a^{10} - \frac{210088494242919206077227}{551707846063147927851149} a^{9} - \frac{40665350294268760269183}{551707846063147927851149} a^{8} + \frac{63054173454947701141391}{551707846063147927851149} a^{7} - \frac{236394366831530464340311}{551707846063147927851149} a^{6} + \frac{209452542004172816672513}{551707846063147927851149} a^{5} + \frac{243971176879060301130255}{551707846063147927851149} a^{4} + \frac{275235933190421439913163}{551707846063147927851149} a^{3} - \frac{129777801486976327854157}{551707846063147927851149} a^{2} + \frac{149085428811512675900137}{551707846063147927851149} a + \frac{5476076252065010346817}{12830415024724370415143}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 168224843913 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.265837.1, \(\Q(\zeta_{11})^+\), 10.10.79589952003133.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||