Normalized defining polynomial
\( x^{20} - 5 x^{19} - 50 x^{18} + 225 x^{17} + 1140 x^{16} - 4174 x^{15} - 15180 x^{14} + 40885 x^{13} + 124360 x^{12} - 228115 x^{11} - 617264 x^{10} + 754985 x^{9} + 1778530 x^{8} - 1588305 x^{7} - 2831085 x^{6} + 2212556 x^{5} + 2195650 x^{4} - 1829365 x^{3} - 484030 x^{2} + 592885 x - 103589 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2829356741780348122119903564453125=5^{27}\cdot 11^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{6}{19} a^{17} + \frac{5}{19} a^{16} + \frac{2}{19} a^{15} - \frac{4}{19} a^{14} - \frac{6}{19} a^{13} + \frac{1}{19} a^{12} + \frac{6}{19} a^{11} - \frac{9}{19} a^{10} - \frac{2}{19} a^{9} + \frac{6}{19} a^{8} - \frac{8}{19} a^{7} - \frac{5}{19} a^{6} - \frac{7}{19} a^{5} + \frac{5}{19} a^{3} + \frac{5}{19} a^{2} + \frac{5}{19} a + \frac{7}{19}$, $\frac{1}{845588391879354345143648500390339} a^{19} - \frac{224428104120826702415157158164}{845588391879354345143648500390339} a^{18} + \frac{26677349492397367649226392741578}{845588391879354345143648500390339} a^{17} + \frac{209817158299727689158378013057279}{845588391879354345143648500390339} a^{16} - \frac{211953889077131739306734502032009}{845588391879354345143648500390339} a^{15} + \frac{16861860375667652056866956361502}{44504652204176544481244657915281} a^{14} + \frac{320630279953944106631412691075206}{845588391879354345143648500390339} a^{13} + \frac{259629325240426508000986888216983}{845588391879354345143648500390339} a^{12} + \frac{203193390044495537700324174380800}{845588391879354345143648500390339} a^{11} - \frac{380348981271496377810835664340677}{845588391879354345143648500390339} a^{10} - \frac{405040829912575035256310553521404}{845588391879354345143648500390339} a^{9} - \frac{374486541198980773360673146181082}{845588391879354345143648500390339} a^{8} + \frac{58833164480051625594065551115491}{845588391879354345143648500390339} a^{7} + \frac{375458871966136087945094469600088}{845588391879354345143648500390339} a^{6} - \frac{272395950362761114875895043967474}{845588391879354345143648500390339} a^{5} - \frac{236734820634415580606140150963708}{845588391879354345143648500390339} a^{4} + \frac{352835359985240987496003646067087}{845588391879354345143648500390339} a^{3} - \frac{258376014019852200468441900255169}{845588391879354345143648500390339} a^{2} + \frac{203891714388596229646735831547541}{845588391879354345143648500390339} a + \frac{3395701196134609997234509640378}{11909695660272596410473922540709}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29332960138.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:C_4$ (as 20T25):
| A solvable group of order 100 |
| The 40 conjugacy class representatives for $C_5\times C_5:C_4$ |
| Character table for $C_5\times C_5:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 10.10.17872314453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.9 | $x^{10} + 297$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |