Normalized defining polynomial
\( x^{20} - 4 x^{19} - 49 x^{18} + 183 x^{17} + 916 x^{16} - 3140 x^{15} - 8616 x^{14} + 26624 x^{13} + 44550 x^{12} - 121756 x^{11} - 129120 x^{10} + 305362 x^{9} + 203500 x^{8} - 406080 x^{7} - 160387 x^{6} + 260630 x^{5} + 54133 x^{4} - 67485 x^{3} - 9972 x^{2} + 5958 x + 873 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28162154599151343753050158965307922722863249=3^{10}\cdot 61^{10}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $148.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{41374636908488009860424070533772746301} a^{19} + \frac{2120931165694019172727460614837948889}{13791545636162669953474690177924248767} a^{18} + \frac{1360689782352078183466894484322141199}{13791545636162669953474690177924248767} a^{17} + \frac{6690794764396399600072921086807161561}{41374636908488009860424070533772746301} a^{16} + \frac{4507770576068179261001957420060310716}{41374636908488009860424070533772746301} a^{15} - \frac{3378794244451084566938978936043438526}{13791545636162669953474690177924248767} a^{14} + \frac{14919605631736166659597830413777583901}{41374636908488009860424070533772746301} a^{13} + \frac{20380264456871129801259042505628642704}{41374636908488009860424070533772746301} a^{12} - \frac{1821395752309507256612610394737784478}{41374636908488009860424070533772746301} a^{11} + \frac{7465217301623228456869270611790113791}{41374636908488009860424070533772746301} a^{10} + \frac{12425266056678140268279756820058700944}{41374636908488009860424070533772746301} a^{9} - \frac{17461380580499408386702634191354435300}{41374636908488009860424070533772746301} a^{8} + \frac{5777192738957649101435507319575482751}{13791545636162669953474690177924248767} a^{7} - \frac{7109176973569365218038252884059563115}{41374636908488009860424070533772746301} a^{6} - \frac{1731749359138360356830972992604186492}{41374636908488009860424070533772746301} a^{5} - \frac{2169678338325383682166544329662412849}{13791545636162669953474690177924248767} a^{4} + \frac{1265603654781445438628623009917752153}{13791545636162669953474690177924248767} a^{3} + \frac{12719425269287041470930750317713801106}{41374636908488009860424070533772746301} a^{2} + \frac{2676709475501162556377398057949056221}{13791545636162669953474690177924248767} a + \frac{3810615414973359627201241870321447897}{13791545636162669953474690177924248767}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3231166245160000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.4.33489.1, 5.5.160801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61 | Data not computed | ||||||
| 401 | Data not computed | ||||||