Properties

Label 20.20.2696796973...0000.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{16}\cdot 5^{10}\cdot 71^{6}\cdot 179^{6}$
Root discriminant $66.30$
Ramified primes $2, 5, 71, 179$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T199

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-211, 52, 4381, -4808, -21265, 25646, 44480, -53802, -46797, 57758, 25401, -34356, -6429, 11414, 356, -2048, 137, 180, -23, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 6*x^19 - 23*x^18 + 180*x^17 + 137*x^16 - 2048*x^15 + 356*x^14 + 11414*x^13 - 6429*x^12 - 34356*x^11 + 25401*x^10 + 57758*x^9 - 46797*x^8 - 53802*x^7 + 44480*x^6 + 25646*x^5 - 21265*x^4 - 4808*x^3 + 4381*x^2 + 52*x - 211)
 
gp: K = bnfinit(x^20 - 6*x^19 - 23*x^18 + 180*x^17 + 137*x^16 - 2048*x^15 + 356*x^14 + 11414*x^13 - 6429*x^12 - 34356*x^11 + 25401*x^10 + 57758*x^9 - 46797*x^8 - 53802*x^7 + 44480*x^6 + 25646*x^5 - 21265*x^4 - 4808*x^3 + 4381*x^2 + 52*x - 211, 1)
 

Normalized defining polynomial

\( x^{20} - 6 x^{19} - 23 x^{18} + 180 x^{17} + 137 x^{16} - 2048 x^{15} + 356 x^{14} + 11414 x^{13} - 6429 x^{12} - 34356 x^{11} + 25401 x^{10} + 57758 x^{9} - 46797 x^{8} - 53802 x^{7} + 44480 x^{6} + 25646 x^{5} - 21265 x^{4} - 4808 x^{3} + 4381 x^{2} + 52 x - 211 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2696796973839336637065754240000000000=2^{16}\cdot 5^{10}\cdot 71^{6}\cdot 179^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $66.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 71, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{519945719974068927994862} a^{19} + \frac{118654519063121025539595}{519945719974068927994862} a^{18} + \frac{45818880757814930793051}{519945719974068927994862} a^{17} - \frac{41161175427335818254726}{259972859987034463997431} a^{16} + \frac{33031602430195797455681}{259972859987034463997431} a^{15} - \frac{11468598821452980227519}{519945719974068927994862} a^{14} + \frac{43097093151395803885671}{259972859987034463997431} a^{13} + \frac{56279056569344483033604}{259972859987034463997431} a^{12} + \frac{12531471200896504121894}{259972859987034463997431} a^{11} + \frac{43067034412001520235037}{259972859987034463997431} a^{10} - \frac{76422803972183978627779}{519945719974068927994862} a^{9} - \frac{98999909581551428871944}{259972859987034463997431} a^{8} + \frac{143066533067328479319255}{519945719974068927994862} a^{7} - \frac{3956937871744343051377}{47267792724915357090442} a^{6} - \frac{47415307328886832511486}{259972859987034463997431} a^{5} + \frac{93515072084378255384088}{259972859987034463997431} a^{4} - \frac{46129601834283018341492}{259972859987034463997431} a^{3} + \frac{166897615114061760990363}{519945719974068927994862} a^{2} + \frac{196746370792717683872299}{519945719974068927994862} a + \frac{41121848283930043770872}{259972859987034463997431}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1256242847270 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T199:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 1440
The 22 conjugacy class representatives for t20n199
Character table for t20n199 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.525501674708224.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 siblings: data not computed
Degree 20 siblings: data not computed
Degree 24 siblings: data not computed
Degree 30 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
2.10.8.1$x^{10} - 2 x^{5} + 4$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
$5$5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.5.1$x^{10} - 50 x^{6} + 625 x^{2} - 12500$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
71Data not computed
$179$$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
179.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
179.3.0.1$x^{3} - x + 5$$1$$3$$0$$C_3$$[\ ]^{3}$
179.6.3.2$x^{6} - 32041 x^{2} + 28676695$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
179.6.3.2$x^{6} - 32041 x^{2} + 28676695$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$