Properties

Label 20.20.2696621908...7504.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{20}\cdot 3^{10}\cdot 13\cdot 71^{9}\cdot 7307$
Root discriminant $41.84$
Ramified primes $2, 3, 13, 71, 7307$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T647

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -10, -31, 354, 252, -2004, -471, 4896, -250, -6300, 1690, 4462, -2074, -1618, 1160, 188, -304, 42, 27, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 27*x^18 + 42*x^17 - 304*x^16 + 188*x^15 + 1160*x^14 - 1618*x^13 - 2074*x^12 + 4462*x^11 + 1690*x^10 - 6300*x^9 - 250*x^8 + 4896*x^7 - 471*x^6 - 2004*x^5 + 252*x^4 + 354*x^3 - 31*x^2 - 10*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 27*x^18 + 42*x^17 - 304*x^16 + 188*x^15 + 1160*x^14 - 1618*x^13 - 2074*x^12 + 4462*x^11 + 1690*x^10 - 6300*x^9 - 250*x^8 + 4896*x^7 - 471*x^6 - 2004*x^5 + 252*x^4 + 354*x^3 - 31*x^2 - 10*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 27 x^{18} + 42 x^{17} - 304 x^{16} + 188 x^{15} + 1160 x^{14} - 1618 x^{13} - 2074 x^{12} + 4462 x^{11} + 1690 x^{10} - 6300 x^{9} - 250 x^{8} + 4896 x^{7} - 471 x^{6} - 2004 x^{5} + 252 x^{4} + 354 x^{3} - 31 x^{2} - 10 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(269662190855447784427693097877504=2^{20}\cdot 3^{10}\cdot 13\cdot 71^{9}\cdot 7307\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $41.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 71, 7307$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5717641570.45 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T647:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 51200
The 152 conjugacy class representatives for t20n647 are not computed
Character table for t20n647 is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), 10.10.6323239406592.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ R ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ $20$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.11$x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$$2$$5$$10$$C_{10}$$[2]^{5}$
$3$3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
3.10.5.1$x^{10} - 18 x^{6} + 81 x^{2} - 243$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$13$$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{13}$$x + 2$$1$$1$$0$Trivial$[\ ]$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.10.0.1$x^{10} + 2 x^{2} - 2 x + 2$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$71$71.5.0.1$x^{5} - x + 8$$1$$5$$0$$C_5$$[\ ]^{5}$
71.5.0.1$x^{5} - x + 8$$1$$5$$0$$C_5$$[\ ]^{5}$
71.10.9.5$x^{10} - 18176$$10$$1$$9$$C_{10}$$[\ ]_{10}$
7307Data not computed