Normalized defining polynomial
\( x^{20} - 4 x^{19} - 211 x^{18} + 1138 x^{17} + 12703 x^{16} - 81202 x^{15} - 279760 x^{14} + 2366808 x^{13} + 1504150 x^{12} - 31913924 x^{11} + 22954298 x^{10} + 194714572 x^{9} - 295344111 x^{8} - 469380944 x^{7} + 1107126565 x^{6} + 182743098 x^{5} - 1481772709 x^{4} + 491417950 x^{3} + 577682706 x^{2} - 321816380 x + 25224604 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(258866544008047715925279948537661096282306445312=2^{16}\cdot 17^{15}\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{5}$, $\frac{1}{152} a^{18} - \frac{5}{152} a^{17} - \frac{5}{152} a^{16} - \frac{7}{76} a^{15} + \frac{1}{19} a^{14} + \frac{4}{19} a^{13} - \frac{3}{19} a^{12} + \frac{3}{38} a^{11} - \frac{7}{76} a^{10} - \frac{5}{76} a^{9} + \frac{13}{76} a^{8} - \frac{9}{19} a^{7} + \frac{75}{152} a^{6} + \frac{41}{152} a^{5} + \frac{47}{152} a^{4} + \frac{5}{38} a^{3} - \frac{11}{76} a^{2} + \frac{8}{19} a - \frac{15}{38}$, $\frac{1}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{19} + \frac{28241384478332113334724842276798637547051980057920661835894712620986117841}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{18} - \frac{218372159626874676303006018341200788038210763049929958822956979799293491227}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{17} - \frac{250208025900432150687499393623566425790339571098815262773706022353326873163}{2222505851020359481182833121928214658163331584005300571445389407698060223468} a^{16} - \frac{271010242616542636237520591720656831682839715971832894754124000923911254805}{3333758776530539221774249682892321987244997376007950857168084111547090335202} a^{15} + \frac{207583542497911573231136068715820341745212500212176191376065050917349742874}{1666879388265269610887124841446160993622498688003975428584042055773545167601} a^{14} - \frac{469791552480488659386056790709804911975965065951306412201988745241360405129}{3333758776530539221774249682892321987244997376007950857168084111547090335202} a^{13} + \frac{594264359152046602805881178565736818968258531699358685435793486380611326075}{3333758776530539221774249682892321987244997376007950857168084111547090335202} a^{12} + \frac{1314783368616337427610441819697451979082543032590691845669717743466484742513}{6667517553061078443548499365784643974489994752015901714336168223094180670404} a^{11} - \frac{542764655929711947635941237887118975650129887393162509284533218263468173657}{6667517553061078443548499365784643974489994752015901714336168223094180670404} a^{10} + \frac{555508107964399539993448446022022065574860001886304971191018823264922057775}{2222505851020359481182833121928214658163331584005300571445389407698060223468} a^{9} + \frac{493628530313923538000561251339993431075159235910769602098603586104798702417}{3333758776530539221774249682892321987244997376007950857168084111547090335202} a^{8} - \frac{4898648627054533611064853849853636208099844407482785464846822570809751385857}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{7} + \frac{2265581735077709161996423784325657605479704014568250419572764002201397661003}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{6} + \frac{4210904668891709962555177636813501047465818770698501319399513421458353729149}{13335035106122156887096998731569287948979989504031803428672336446188361340808} a^{5} - \frac{270919352124786161382375406506711281662180640377935005467259644157780321005}{1666879388265269610887124841446160993622498688003975428584042055773545167601} a^{4} - \frac{701014017159739200012516361111045517470433845658873172507471658575003437749}{6667517553061078443548499365784643974489994752015901714336168223094180670404} a^{3} - \frac{75529887823139405395219329251786062660920827187165819377458456449686241055}{370417641836726580197138853654702443027221930667550095240898234616343370578} a^{2} - \frac{361539671004566708603165977563330800704631239936529668597618189435179979259}{1111252925510179740591416560964107329081665792002650285722694703849030111734} a + \frac{20477132595211579069066462150625970403651227891265494637220266111368976268}{87730494119224716362480254812955841769605194105472390978107476619660271979}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1146610929550000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_4:F_5$ |
| Character table for $C_4:F_5$ |
Intermediate fields
| \(\Q(\sqrt{901}) \), 4.4.13800617.1, 5.5.2382032.1, 10.10.426987989728139087104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $17$ | 17.4.3.2 | $x^{4} - 153$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 17.8.6.1 | $x^{8} - 119 x^{4} + 23409$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 53 | Data not computed | ||||||