Normalized defining polynomial
\( x^{20} - 120 x^{18} - 108 x^{17} + 5641 x^{16} + 8736 x^{15} - 134648 x^{14} - 281880 x^{13} + 1734073 x^{12} + 4608864 x^{11} - 11471684 x^{10} - 40112652 x^{9} + 29464915 x^{8} + 179834256 x^{7} + 31646308 x^{6} - 379196064 x^{5} - 261172829 x^{4} + 293301600 x^{3} + 299329500 x^{2} - 50884740 x - 82487645 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2573949951469829350637332070400000000000000=2^{50}\cdot 3^{14}\cdot 5^{14}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{6} a^{8} - \frac{1}{3} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{3} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{90} a^{11} + \frac{1}{45} a^{10} - \frac{1}{90} a^{9} + \frac{2}{45} a^{8} + \frac{8}{45} a^{7} + \frac{2}{9} a^{6} - \frac{37}{90} a^{5} + \frac{14}{45} a^{4} + \frac{5}{18} a^{3} + \frac{2}{9} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{720} a^{12} + \frac{1}{72} a^{10} - \frac{1}{30} a^{9} + \frac{1}{90} a^{8} + \frac{7}{30} a^{7} + \frac{59}{360} a^{6} - \frac{2}{5} a^{5} - \frac{83}{360} a^{4} + \frac{1}{3} a^{3} + \frac{17}{36} a^{2} - \frac{1}{12} a - \frac{19}{144}$, $\frac{1}{2160} a^{13} - \frac{1}{2160} a^{12} + \frac{1}{216} a^{11} + \frac{43}{1080} a^{10} + \frac{2}{135} a^{9} + \frac{1}{54} a^{8} - \frac{5}{216} a^{7} - \frac{143}{1080} a^{6} + \frac{61}{1080} a^{5} + \frac{503}{1080} a^{4} - \frac{31}{108} a^{3} - \frac{25}{54} a^{2} - \frac{7}{432} a + \frac{139}{432}$, $\frac{1}{4320} a^{14} - \frac{1}{4320} a^{13} + \frac{1}{4320} a^{12} + \frac{7}{2160} a^{11} + \frac{79}{2160} a^{10} - \frac{1}{135} a^{9} + \frac{31}{432} a^{8} - \frac{79}{432} a^{7} + \frac{7}{216} a^{6} + \frac{251}{2160} a^{5} - \frac{751}{2160} a^{4} - \frac{43}{108} a^{3} - \frac{187}{864} a^{2} + \frac{103}{864} a - \frac{5}{96}$, $\frac{1}{4320} a^{15} - \frac{1}{1440} a^{12} - \frac{1}{216} a^{11} + \frac{47}{720} a^{10} + \frac{91}{2160} a^{9} + \frac{1}{90} a^{8} - \frac{133}{2160} a^{7} - \frac{47}{720} a^{6} - \frac{29}{540} a^{5} - \frac{67}{144} a^{4} - \frac{65}{288} a^{3} + \frac{19}{72} a^{2} - \frac{31}{432} a + \frac{19}{288}$, $\frac{1}{21600} a^{16} + \frac{1}{10800} a^{15} + \frac{1}{10800} a^{14} + \frac{1}{7200} a^{13} - \frac{7}{10800} a^{12} - \frac{17}{10800} a^{11} + \frac{221}{10800} a^{10} - \frac{41}{5400} a^{9} + \frac{409}{10800} a^{8} + \frac{1363}{10800} a^{7} - \frac{11}{540} a^{6} - \frac{731}{2160} a^{5} - \frac{1451}{21600} a^{4} + \frac{7}{240} a^{3} + \frac{31}{1080} a^{2} + \frac{1499}{4320} a - \frac{203}{2160}$, $\frac{1}{64800} a^{17} - \frac{1}{64800} a^{16} - \frac{1}{16200} a^{15} + \frac{7}{64800} a^{14} + \frac{7}{64800} a^{13} + \frac{1}{8100} a^{12} - \frac{89}{16200} a^{11} - \frac{53}{1296} a^{10} - \frac{61}{6480} a^{9} + \frac{763}{16200} a^{8} + \frac{3341}{32400} a^{7} - \frac{169}{6480} a^{6} - \frac{25781}{64800} a^{5} + \frac{31703}{64800} a^{4} + \frac{353}{6480} a^{3} - \frac{223}{12960} a^{2} - \frac{193}{12960} a + \frac{1799}{6480}$, $\frac{1}{2462400} a^{18} - \frac{1}{273600} a^{17} + \frac{17}{1231200} a^{16} + \frac{23}{820800} a^{15} + \frac{103}{1231200} a^{14} - \frac{131}{820800} a^{13} + \frac{7}{10944} a^{12} + \frac{283}{68400} a^{11} + \frac{10211}{123120} a^{10} - \frac{2171}{51300} a^{9} - \frac{2243}{307800} a^{8} + \frac{30947}{205200} a^{7} - \frac{2171}{14400} a^{6} + \frac{131749}{273600} a^{5} + \frac{345623}{1231200} a^{4} + \frac{16991}{54720} a^{3} - \frac{104977}{246240} a^{2} - \frac{16247}{54720} a + \frac{2779}{25920}$, $\frac{1}{393035224638748971491764488000} a^{19} - \frac{3769838061989179832383}{24564701539921810718235280500} a^{18} - \frac{2536338295504489006087961}{393035224638748971491764488000} a^{17} - \frac{61286994468876733652591}{4137212890934199699913310400} a^{16} + \frac{3596772323718881549431451}{393035224638748971491764488000} a^{15} + \frac{41362424103729488654044123}{393035224638748971491764488000} a^{14} - \frac{7016597887294256210579387}{65505870773124828581960748000} a^{13} - \frac{13169534545262923272830663}{131011741546249657163921496000} a^{12} + \frac{97835948801322094060263263}{19651761231937448574588224400} a^{11} - \frac{298745926059594608953201279}{98258806159687242872941122000} a^{10} + \frac{2794375394507111033705652431}{98258806159687242872941122000} a^{9} - \frac{1820509100513384630838093059}{24564701539921810718235280500} a^{8} + \frac{139459130343294544293029779}{1000089630124043184457416000} a^{7} - \frac{524002432338561690474982391}{3275293538656241429098037400} a^{6} - \frac{41418300349291716850802140007}{393035224638748971491764488000} a^{5} + \frac{54638137629152970337396760777}{393035224638748971491764488000} a^{4} - \frac{2742093166031849848038641179}{15721408985549958859670579520} a^{3} - \frac{6989301241993775163187773527}{15721408985549958859670579520} a^{2} + \frac{3568414128224664827502394561}{7860704492774979429835289760} a + \frac{1766033035342216672859529983}{4137212890934199699913310400}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7402171873190000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:Q_8$ (as 20T47):
| A solvable group of order 200 |
| The 8 conjugacy class representatives for $C_5^2:Q_8$ |
| Character table for $C_5^2:Q_8$ |
Intermediate fields
| \(\Q(\sqrt{6}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{5}, \sqrt{6})\), 10.10.320870687440896000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.8.22.3 | $x^{8} + 8 x^{6} + 6 x^{4} + 16 x^{2} + 16 x + 4$ | $4$ | $2$ | $22$ | $Q_8$ | $[3, 4]^{2}$ | |
| 2.8.22.3 | $x^{8} + 8 x^{6} + 6 x^{4} + 16 x^{2} + 16 x + 4$ | $4$ | $2$ | $22$ | $Q_8$ | $[3, 4]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.10.8.1 | $x^{10} - 23 x^{5} + 3703$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |