Normalized defining polynomial
\( x^{20} - 80 x^{18} + 2720 x^{16} - 84 x^{15} - 51200 x^{14} + 5040 x^{13} + 582400 x^{12} - 120960 x^{11} - 4098224 x^{10} + 1478400 x^{9} + 17496960 x^{8} - 9676800 x^{7} - 42205440 x^{6} + 32580096 x^{5} + 48076800 x^{4} - 49489920 x^{3} - 14233600 x^{2} + 25927680 x - 6385664 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25677931719982971191406250000000000000000=2^{16}\cdot 5^{30}\cdot 29^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{4} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{8} a^{9}$, $\frac{1}{240} a^{10} - \frac{1}{24} a^{8} + \frac{1}{12} a^{6} - \frac{1}{20} a^{5} + \frac{1}{6} a^{4} - \frac{1}{3} a^{2} + \frac{1}{15}$, $\frac{1}{240} a^{11} - \frac{1}{24} a^{9} + \frac{1}{12} a^{7} - \frac{1}{20} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{3} + \frac{1}{15} a$, $\frac{1}{480} a^{12} - \frac{1}{24} a^{8} - \frac{1}{40} a^{7} + \frac{1}{6} a^{4} + \frac{11}{30} a^{2} + \frac{1}{3}$, $\frac{1}{960} a^{13} + \frac{1}{24} a^{9} - \frac{1}{80} a^{8} + \frac{1}{12} a^{5} + \frac{11}{60} a^{3} - \frac{1}{3} a$, $\frac{1}{9600} a^{14} - \frac{1}{2400} a^{13} - \frac{1}{2400} a^{12} + \frac{1}{600} a^{11} + \frac{1}{600} a^{10} + \frac{127}{2400} a^{9} + \frac{23}{600} a^{8} - \frac{13}{150} a^{7} + \frac{1}{75} a^{6} + \frac{1}{75} a^{5} + \frac{27}{200} a^{4} - \frac{31}{150} a^{3} - \frac{31}{150} a^{2} + \frac{4}{25} a + \frac{37}{75}$, $\frac{1}{76800} a^{15} + \frac{1}{3840} a^{13} - \frac{1}{480} a^{11} + \frac{23}{19200} a^{10} + \frac{1}{48} a^{9} - \frac{29}{480} a^{8} + \frac{1}{12} a^{7} - \frac{19}{240} a^{6} + \frac{73}{4800} a^{5} + \frac{1}{6} a^{4} + \frac{17}{80} a^{3} - \frac{1}{3} a^{2} - \frac{9}{20} a - \frac{31}{300}$, $\frac{1}{76800} a^{16} - \frac{1}{19200} a^{14} + \frac{1}{4800} a^{13} - \frac{1}{1200} a^{12} + \frac{7}{19200} a^{11} - \frac{1}{1200} a^{10} - \frac{21}{400} a^{9} + \frac{9}{400} a^{8} + \frac{17}{1200} a^{7} + \frac{147}{1600} a^{6} - \frac{9}{100} a^{5} + \frac{169}{1200} a^{4} - \frac{23}{100} a^{3} - \frac{149}{300} a^{2} - \frac{11}{60} a + \frac{19}{75}$, $\frac{1}{768000} a^{17} - \frac{1}{384000} a^{16} - \frac{1}{192000} a^{15} - \frac{1}{19200} a^{14} + \frac{1}{2400} a^{13} + \frac{103}{192000} a^{12} + \frac{97}{96000} a^{11} + \frac{23}{12000} a^{10} - \frac{37}{800} a^{9} + \frac{13}{2400} a^{8} - \frac{1589}{16000} a^{7} - \frac{611}{8000} a^{6} - \frac{143}{12000} a^{5} - \frac{211}{1200} a^{4} + \frac{59}{600} a^{3} + \frac{1139}{3000} a^{2} + \frac{611}{1500} a - \frac{14}{125}$, $\frac{1}{1536000} a^{18} - \frac{1}{192000} a^{16} - \frac{1}{192000} a^{15} - \frac{1}{19200} a^{14} - \frac{17}{384000} a^{13} - \frac{1}{4800} a^{12} + \frac{23}{32000} a^{11} - \frac{21}{16000} a^{10} - \frac{17}{4800} a^{9} - \frac{269}{32000} a^{8} + \frac{41}{400} a^{7} - \frac{19}{375} a^{6} - \frac{51}{4000} a^{5} - \frac{11}{75} a^{4} - \frac{1441}{6000} a^{3} + \frac{89}{300} a^{2} - \frac{51}{500} a - \frac{229}{750}$, $\frac{1}{3072000} a^{19} + \frac{1}{192000} a^{16} + \frac{1}{384000} a^{15} + \frac{23}{768000} a^{14} - \frac{1}{6400} a^{13} - \frac{3}{12800} a^{12} - \frac{19}{16000} a^{11} - \frac{17}{96000} a^{10} + \frac{7673}{192000} a^{9} - \frac{59}{1200} a^{8} - \frac{13}{1600} a^{7} - \frac{279}{4000} a^{6} - \frac{2357}{24000} a^{5} - \frac{577}{4000} a^{4} + \frac{187}{1200} a^{3} - \frac{7}{200} a^{2} - \frac{109}{500} a - \frac{641}{1500}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 94753821362700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T50):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{29})\), 10.10.32048670312500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.13.2 | $x^{10} + 10 x^{4} + 5$ | $10$ | $1$ | $13$ | $D_{10}$ | $[3/2]_{2}^{2}$ |
| 5.10.17.6 | $x^{10} - 20 x^{8} + 5$ | $10$ | $1$ | $17$ | $D_{10}$ | $[2]_{2}^{2}$ | |
| $29$ | 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |