Normalized defining polynomial
\( x^{20} - x^{19} - 101 x^{18} + 128 x^{17} + 4008 x^{16} - 5805 x^{15} - 81655 x^{14} + 126810 x^{13} + 948445 x^{12} - 1524673 x^{11} - 6577211 x^{10} + 10786542 x^{9} + 27350617 x^{8} - 45881421 x^{7} - 65289834 x^{6} + 114875447 x^{5} + 77439919 x^{4} - 155522891 x^{3} - 22316787 x^{2} + 87698196 x - 21505501 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(253416930220228745861458867005767822265625=5^{16}\cdot 11^{6}\cdot 71^{6}\cdot 97^{2}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 71, 97, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{159940861412501243201363580576622717966443350425888124695} a^{19} + \frac{5139215233069903221655870879996617569729745135963418997}{159940861412501243201363580576622717966443350425888124695} a^{18} - \frac{5739571957052200572612931491047850784908468778447963873}{159940861412501243201363580576622717966443350425888124695} a^{17} + \frac{5648347775104026718412350681281877962726995438812582029}{159940861412501243201363580576622717966443350425888124695} a^{16} - \frac{2228844623786174624438258790027667097357844266484817404}{31988172282500248640272716115324543593288670085177624939} a^{15} - \frac{1292703731891475254670645216732277328476909522406064627}{31988172282500248640272716115324543593288670085177624939} a^{14} + \frac{23768482789657565196258517619994043030210796162524147183}{159940861412501243201363580576622717966443350425888124695} a^{13} + \frac{32056273956168572546617331838796982900410719393426064681}{159940861412501243201363580576622717966443350425888124695} a^{12} + \frac{7994882862962961264930968495504298091137113966896289752}{31988172282500248640272716115324543593288670085177624939} a^{11} - \frac{78198521705065482539181536338822136798735550022127874323}{159940861412501243201363580576622717966443350425888124695} a^{10} - \frac{9038246959281839416939182043658869624830799143553522057}{31988172282500248640272716115324543593288670085177624939} a^{9} - \frac{14812431150789885025826924582167568482518087379958504133}{159940861412501243201363580576622717966443350425888124695} a^{8} - \frac{66156895269563906442872538184873995532193861067595067936}{159940861412501243201363580576622717966443350425888124695} a^{7} - \frac{12747106317701277577333341954324892026973904898197256906}{31988172282500248640272716115324543593288670085177624939} a^{6} - \frac{1382577938254402617609045686554469100090755488201768700}{31988172282500248640272716115324543593288670085177624939} a^{5} + \frac{54797575121424864209345413839804719342409867767131415277}{159940861412501243201363580576622717966443350425888124695} a^{4} + \frac{77364331248082417828272612356560082105893106970363415803}{159940861412501243201363580576622717966443350425888124695} a^{3} - \frac{49742978413855733143899632057509433396344592366440429408}{159940861412501243201363580576622717966443350425888124695} a^{2} - \frac{13846531196034437912705267426477980253856769031281398517}{159940861412501243201363580576622717966443350425888124695} a - \frac{49881624575688708310774482543744894236778195300490971368}{159940861412501243201363580576622717966443350425888124695}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 259792778733000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | $18{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.10.16.14 | $x^{10} + 20 x^{9} + 10 x^{8} + 10 x^{7} + 15 x^{6} + 15 x^{5} + 5 x^{4} + 15 x^{3} + 5 x^{2} + 20 x + 7$ | $5$ | $2$ | $16$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.8.6.3 | $x^{8} - 11 x^{4} + 847$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 11.12.0.1 | $x^{12} - x + 7$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $71$ | 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 71.8.0.1 | $x^{8} - 7 x + 13$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 71.8.6.1 | $x^{8} - 14129 x^{4} + 73805281$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| 97 | Data not computed | ||||||
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.8.4.1 | $x^{8} + 3346680 x^{4} - 4657463 x^{2} + 2800066755600$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |