Normalized defining polynomial
\( x^{20} - 80 x^{18} + 2481 x^{16} - 38928 x^{14} + 342348 x^{12} - 1756320 x^{10} + 5304924 x^{8} - 9388512 x^{6} + 9347172 x^{4} - 4643456 x^{2} + 806404 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25256886457092151447506023978226149228544=2^{70}\cdot 3^{16}\cdot 89^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $104.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{96} a^{12} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} + \frac{41}{96} a^{8} + \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{6} a^{5} - \frac{13}{48} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{17}{48}$, $\frac{1}{96} a^{13} - \frac{1}{12} a^{11} - \frac{1}{6} a^{10} + \frac{41}{96} a^{9} + \frac{1}{6} a^{8} + \frac{1}{4} a^{7} - \frac{1}{6} a^{6} - \frac{13}{48} a^{5} - \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{17}{48} a + \frac{1}{3}$, $\frac{1}{672} a^{14} - \frac{1}{336} a^{12} - \frac{1}{6} a^{11} - \frac{13}{224} a^{10} + \frac{1}{6} a^{9} - \frac{89}{336} a^{8} - \frac{1}{6} a^{7} - \frac{5}{336} a^{6} - \frac{1}{6} a^{5} - \frac{5}{56} a^{4} - \frac{1}{3} a^{3} - \frac{97}{336} a^{2} + \frac{1}{3} a - \frac{83}{168}$, $\frac{1}{672} a^{15} - \frac{1}{336} a^{13} - \frac{13}{224} a^{11} - \frac{1}{6} a^{10} - \frac{89}{336} a^{9} - \frac{1}{3} a^{8} - \frac{5}{336} a^{7} - \frac{1}{6} a^{6} - \frac{5}{56} a^{5} + \frac{1}{3} a^{4} - \frac{97}{336} a^{3} - \frac{1}{3} a^{2} - \frac{83}{168} a + \frac{1}{3}$, $\frac{1}{4704} a^{16} - \frac{1}{4704} a^{12} - \frac{1}{6} a^{11} - \frac{37}{294} a^{10} - \frac{1}{3} a^{9} - \frac{111}{392} a^{8} - \frac{1}{6} a^{7} + \frac{50}{147} a^{6} + \frac{1}{3} a^{5} + \frac{977}{2352} a^{4} - \frac{1}{3} a^{3} - \frac{1}{98} a^{2} + \frac{1}{3} a + \frac{149}{1176}$, $\frac{1}{9408} a^{17} - \frac{1}{9408} a^{13} - \frac{37}{588} a^{11} + \frac{281}{784} a^{9} - \frac{97}{294} a^{7} - \frac{1}{2} a^{6} + \frac{977}{4704} a^{5} - \frac{1}{2} a^{4} + \frac{97}{196} a^{3} - \frac{1}{2} a^{2} + \frac{149}{2352} a - \frac{1}{2}$, $\frac{1}{766966549440} a^{18} + \frac{2398899}{63913879120} a^{16} + \frac{71995151}{153393309888} a^{14} + \frac{805639391}{383483274720} a^{12} - \frac{1}{6} a^{11} + \frac{2882186633}{95870818680} a^{10} + \frac{1}{6} a^{9} - \frac{14311047697}{54783324960} a^{8} - \frac{1}{6} a^{7} + \frac{778774863}{1966580896} a^{6} + \frac{1}{3} a^{5} - \frac{42258880343}{191741637360} a^{4} - \frac{1}{3} a^{3} - \frac{2016250507}{63913879120} a^{2} - \frac{1}{6} a - \frac{27820558599}{63913879120}$, $\frac{1}{344367980698560} a^{19} + \frac{2867691569}{172183990349280} a^{17} - \frac{35080638365}{68873596139712} a^{15} + \frac{51802048111}{10761499396830} a^{13} - \frac{2648412107063}{28697331724880} a^{11} - \frac{1}{6} a^{10} - \frac{2300996023399}{8199237635680} a^{9} - \frac{1}{3} a^{8} - \frac{1255116570823}{2648984466912} a^{7} + \frac{1}{3} a^{6} + \frac{3722623038049}{10761499396830} a^{5} + \frac{1}{3} a^{4} + \frac{13435268291269}{86091995174640} a^{3} + \frac{1}{6} a^{2} + \frac{13741338641713}{86091995174640} a + \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 609905742996000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 13 conjugacy class representatives for t20n201 |
| Character table for t20n201 |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.39731038289582358528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.8.31.175 | $x^{8} + 8 x^{4} + 46$ | $8$ | $1$ | $31$ | $D_{8}$ | $[2, 3, 4, 5]$ | |
| 2.8.31.175 | $x^{8} + 8 x^{4} + 46$ | $8$ | $1$ | $31$ | $D_{8}$ | $[2, 3, 4, 5]$ | |
| $3$ | 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $89$ | $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{89}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.3.0.1 | $x^{3} - x + 7$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 89.6.3.1 | $x^{6} - 178 x^{4} + 7921 x^{2} - 34543481$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 89.6.3.1 | $x^{6} - 178 x^{4} + 7921 x^{2} - 34543481$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |