Normalized defining polynomial
\( x^{20} - 1120 x^{18} + 521290 x^{16} - 130885375 x^{14} + 19269155025 x^{12} - 1694385726125 x^{10} + 86930584311625 x^{8} - 2450150378240625 x^{6} + 34983624030843125 x^{4} - 229894048766759375 x^{2} + 525065587402128125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(247056608274284803549371247668512000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\cdot 331^{2}\cdot 39161^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 331, 39161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{625} a^{16}$, $\frac{1}{625} a^{17}$, $\frac{1}{333979556798229942612688706777644645011186226999728897125169123494375} a^{18} - \frac{44165676267164835217319448807951143172766799052100425754782105038}{333979556798229942612688706777644645011186226999728897125169123494375} a^{16} + \frac{27983501178206891674987919643580054715700475922127323503207203146}{13359182271929197704507548271105785800447449079989155885006764939775} a^{14} - \frac{104431561567378932470403657367886630879212570463109442030112657741}{66795911359645988522537741355528929002237245399945779425033824698875} a^{12} - \frac{194599551336808774547803410326568819137661148211031591716498863173}{13359182271929197704507548271105785800447449079989155885006764939775} a^{10} + \frac{83610032828270104270432621443378199087065169437683419709788519689}{13359182271929197704507548271105785800447449079989155885006764939775} a^{8} + \frac{261975231491735070923162147107721844242526059722069832883243723692}{2671836454385839540901509654221157160089489815997831177001352987955} a^{6} - \frac{142156012096527983233879829434700977488164234178074344100980794294}{2671836454385839540901509654221157160089489815997831177001352987955} a^{4} - \frac{2831124045289201240225247019341616051863858933980221878804366743}{23233360472920343833926170906270931826865128834763749365229156417} a^{2} - \frac{9607975783686048796400022665235422724782182346432628066433}{41224756555547773783222574685619342446323567585357112828301}$, $\frac{1}{333979556798229942612688706777644645011186226999728897125169123494375} a^{19} - \frac{44165676267164835217319448807951143172766799052100425754782105038}{333979556798229942612688706777644645011186226999728897125169123494375} a^{17} + \frac{27983501178206891674987919643580054715700475922127323503207203146}{13359182271929197704507548271105785800447449079989155885006764939775} a^{15} - \frac{104431561567378932470403657367886630879212570463109442030112657741}{66795911359645988522537741355528929002237245399945779425033824698875} a^{13} - \frac{194599551336808774547803410326568819137661148211031591716498863173}{13359182271929197704507548271105785800447449079989155885006764939775} a^{11} + \frac{83610032828270104270432621443378199087065169437683419709788519689}{13359182271929197704507548271105785800447449079989155885006764939775} a^{9} + \frac{261975231491735070923162147107721844242526059722069832883243723692}{2671836454385839540901509654221157160089489815997831177001352987955} a^{7} - \frac{142156012096527983233879829434700977488164234178074344100980794294}{2671836454385839540901509654221157160089489815997831177001352987955} a^{5} - \frac{2831124045289201240225247019341616051863858933980221878804366743}{23233360472920343833926170906270931826865128834763749365229156417} a^{3} - \frac{9607975783686048796400022665235422724782182346432628066433}{41224756555547773783222574685619342446323567585357112828301} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125538763513000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n344 are not computed |
| Character table for t20n344 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 331 | Data not computed | ||||||
| 39161 | Data not computed | ||||||