Normalized defining polynomial
\( x^{20} - 1025 x^{18} + 444245 x^{16} - 106256150 x^{14} + 15353076700 x^{12} - 1378772819750 x^{10} + 76277301787625 x^{8} - 2487800964728750 x^{6} + 43566322711008125 x^{4} - 334901325114803125 x^{2} + 525065587402128125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(247056608274284803549371247668512000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\cdot 331^{2}\cdot 39161^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 331, 39161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{625} a^{16}$, $\frac{1}{625} a^{17}$, $\frac{1}{4098989747230530644474611098075822878233921082727636102611146338125} a^{18} + \frac{429818338560486117478692291790393710559011333034744984981567644}{4098989747230530644474611098075822878233921082727636102611146338125} a^{16} + \frac{3047489571419773755099464146792984571994492385521645244044216576}{819797949446106128894922219615164575646784216545527220522229267625} a^{14} + \frac{24713591901788532333654311067717685398895277779982390462690357}{163959589889221225778984443923032915129356843309105444104445853525} a^{12} + \frac{1182531776915065355339504110477923548575046178332137783731311587}{163959589889221225778984443923032915129356843309105444104445853525} a^{10} + \frac{78944259176996531528046408784261474096836472729189595016023454}{163959589889221225778984443923032915129356843309105444104445853525} a^{8} + \frac{1454795030622347111544636121554657233193030593513202303850992501}{32791917977844245155796888784606583025871368661821088820889170705} a^{6} + \frac{2726137351683959315753125594736002636159398773602977995394135727}{32791917977844245155796888784606583025871368661821088820889170705} a^{4} - \frac{1137825418266584292802742181355525675381295579590035843538000462}{6558383595568849031159377756921316605174273732364217764177834141} a^{2} - \frac{151776637246203614133057492468085876460027136209403019456}{505958676253206245034876763445699267604335817824504770351}$, $\frac{1}{4098989747230530644474611098075822878233921082727636102611146338125} a^{19} + \frac{429818338560486117478692291790393710559011333034744984981567644}{4098989747230530644474611098075822878233921082727636102611146338125} a^{17} + \frac{3047489571419773755099464146792984571994492385521645244044216576}{819797949446106128894922219615164575646784216545527220522229267625} a^{15} + \frac{24713591901788532333654311067717685398895277779982390462690357}{163959589889221225778984443923032915129356843309105444104445853525} a^{13} + \frac{1182531776915065355339504110477923548575046178332137783731311587}{163959589889221225778984443923032915129356843309105444104445853525} a^{11} + \frac{78944259176996531528046408784261474096836472729189595016023454}{163959589889221225778984443923032915129356843309105444104445853525} a^{9} + \frac{1454795030622347111544636121554657233193030593513202303850992501}{32791917977844245155796888784606583025871368661821088820889170705} a^{7} + \frac{2726137351683959315753125594736002636159398773602977995394135727}{32791917977844245155796888784606583025871368661821088820889170705} a^{5} - \frac{1137825418266584292802742181355525675381295579590035843538000462}{6558383595568849031159377756921316605174273732364217764177834141} a^{3} - \frac{151776637246203614133057492468085876460027136209403019456}{505958676253206245034876763445699267604335817824504770351} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148727338307000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n344 are not computed |
| Character table for t20n344 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 331 | Data not computed | ||||||
| 39161 | Data not computed | ||||||