Normalized defining polynomial
\( x^{20} - 925 x^{18} + 345290 x^{16} - 69250575 x^{14} + 8294073900 x^{12} - 620327617375 x^{10} + 29331554339500 x^{8} - 864153686645000 x^{6} + 15118770876116875 x^{4} - 140883697770453125 x^{2} + 525065587402128125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(247056608274284803549371247668512000000000000000=2^{20}\cdot 5^{15}\cdot 11^{16}\cdot 331^{2}\cdot 39161^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $234.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 331, 39161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{2183935835235625} a^{16} - \frac{1306222718786}{436787167047125} a^{14} - \frac{15705465842}{17471486681885} a^{12} + \frac{1377389274733}{87357433409425} a^{10} + \frac{510581108656}{87357433409425} a^{8} - \frac{277821184323}{17471486681885} a^{6} + \frac{865009508558}{17471486681885} a^{4} - \frac{155051145140}{3494297336377} a^{2} - \frac{225205033322}{3494297336377}$, $\frac{1}{2183935835235625} a^{17} - \frac{1306222718786}{436787167047125} a^{15} - \frac{15705465842}{17471486681885} a^{13} + \frac{1377389274733}{87357433409425} a^{11} + \frac{510581108656}{87357433409425} a^{9} - \frac{277821184323}{17471486681885} a^{7} + \frac{865009508558}{17471486681885} a^{5} - \frac{155051145140}{3494297336377} a^{3} - \frac{225205033322}{3494297336377} a$, $\frac{1}{181483627436769403907846022557446031098969094076875} a^{18} - \frac{4902207004859019397016285695768311}{36296725487353880781569204511489206219793818815375} a^{16} + \frac{53556534000464597879947972547429061649777361929}{36296725487353880781569204511489206219793818815375} a^{14} - \frac{108935094823705830838347009397232342463491745352}{36296725487353880781569204511489206219793818815375} a^{12} + \frac{52388367822222432382307166510139316181056729344}{7259345097470776156313840902297841243958763763075} a^{10} + \frac{5823401147344957590012579184424599198661346568}{7259345097470776156313840902297841243958763763075} a^{8} + \frac{4815571160529660404448203563882217910269599757}{290373803898831046252553636091913649758350550523} a^{6} - \frac{12187262468363361509617346537923606077789441068}{290373803898831046252553636091913649758350550523} a^{4} + \frac{94587474155000750568390936679591380459184796452}{290373803898831046252553636091913649758350550523} a^{2} + \frac{4061787851690432430475122070407630598965}{22401426098120389848719924285908536520153}$, $\frac{1}{181483627436769403907846022557446031098969094076875} a^{19} - \frac{4902207004859019397016285695768311}{36296725487353880781569204511489206219793818815375} a^{17} + \frac{53556534000464597879947972547429061649777361929}{36296725487353880781569204511489206219793818815375} a^{15} - \frac{108935094823705830838347009397232342463491745352}{36296725487353880781569204511489206219793818815375} a^{13} + \frac{52388367822222432382307166510139316181056729344}{7259345097470776156313840902297841243958763763075} a^{11} + \frac{5823401147344957590012579184424599198661346568}{7259345097470776156313840902297841243958763763075} a^{9} + \frac{4815571160529660404448203563882217910269599757}{290373803898831046252553636091913649758350550523} a^{7} - \frac{12187262468363361509617346537923606077789441068}{290373803898831046252553636091913649758350550523} a^{5} + \frac{94587474155000750568390936679591380459184796452}{290373803898831046252553636091913649758350550523} a^{3} + \frac{4061787851690432430475122070407630598965}{22401426098120389848719924285908536520153} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76575733458300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_2^4:C_5$ (as 20T75):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_4\times C_2^4:C_5$ |
| Character table for $C_4\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 331 | Data not computed | ||||||
| 39161 | Data not computed | ||||||