Normalized defining polynomial
\( x^{20} - 2 x^{19} - 46 x^{18} + 115 x^{17} + 707 x^{16} - 2064 x^{15} - 4437 x^{14} + 15259 x^{13} + 11851 x^{12} - 52015 x^{11} - 13592 x^{10} + 85401 x^{9} + 12862 x^{8} - 73500 x^{7} - 14084 x^{6} + 31918 x^{5} + 8971 x^{4} - 5475 x^{3} - 2091 x^{2} - x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(246359373213147467442410887070161=11^{16}\cdot 43^{4}\cdot 199^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{50636555126688253840362622807} a^{19} - \frac{19585119431895071452884346526}{50636555126688253840362622807} a^{18} - \frac{14352311052536609212534128296}{50636555126688253840362622807} a^{17} + \frac{7211836129512402135355597032}{50636555126688253840362622807} a^{16} + \frac{2163177907086457315519931289}{50636555126688253840362622807} a^{15} + \frac{13563563896772499502207505566}{50636555126688253840362622807} a^{14} + \frac{2767184848836920901518551143}{50636555126688253840362622807} a^{13} + \frac{18862606474343406567651200529}{50636555126688253840362622807} a^{12} + \frac{13702132231069360362026067576}{50636555126688253840362622807} a^{11} + \frac{2643880547454236031277228467}{50636555126688253840362622807} a^{10} - \frac{9014318199073930308364029880}{50636555126688253840362622807} a^{9} - \frac{2429299886090836392237053353}{50636555126688253840362622807} a^{8} - \frac{9552057637543303686393859009}{50636555126688253840362622807} a^{7} - \frac{7900123424177464710744301751}{50636555126688253840362622807} a^{6} - \frac{2902005792528143973700139960}{50636555126688253840362622807} a^{5} - \frac{11574857139318279185936144347}{50636555126688253840362622807} a^{4} - \frac{14348658106601331756361756275}{50636555126688253840362622807} a^{3} - \frac{14462901708316465955062015571}{50636555126688253840362622807} a^{2} + \frac{22549220994875267463314480569}{50636555126688253840362622807} a - \frac{5128697325611880303766983659}{50636555126688253840362622807}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5374624052.84 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n314 |
| Character table for t20n314 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1834268944717.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 43 | Data not computed | ||||||
| 199 | Data not computed | ||||||