Normalized defining polynomial
\( x^{20} - 10 x^{19} + 9 x^{18} + 201 x^{17} - 552 x^{16} - 1310 x^{15} + 5856 x^{14} + 2333 x^{13} - 27237 x^{12} + 6515 x^{11} + 65619 x^{10} - 29820 x^{9} - 85521 x^{8} + 36187 x^{7} + 58922 x^{6} - 11943 x^{5} - 19062 x^{4} - 271 x^{3} + 2043 x^{2} + 242 x - 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(246359373213147467442410887070161=11^{16}\cdot 43^{4}\cdot 199^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} + \frac{11}{23} a^{16} - \frac{8}{23} a^{15} + \frac{5}{23} a^{14} + \frac{3}{23} a^{13} - \frac{6}{23} a^{12} - \frac{6}{23} a^{11} - \frac{4}{23} a^{10} + \frac{11}{23} a^{9} + \frac{2}{23} a^{8} - \frac{8}{23} a^{7} - \frac{2}{23} a^{6} - \frac{2}{23} a^{5} - \frac{1}{23} a^{4} - \frac{7}{23} a^{3} + \frac{8}{23} a^{2} - \frac{9}{23} a$, $\frac{1}{23} a^{18} + \frac{9}{23} a^{16} + \frac{1}{23} a^{15} - \frac{6}{23} a^{14} + \frac{7}{23} a^{13} - \frac{9}{23} a^{12} - \frac{7}{23} a^{11} + \frac{9}{23} a^{10} - \frac{4}{23} a^{9} - \frac{7}{23} a^{8} - \frac{6}{23} a^{7} - \frac{3}{23} a^{6} - \frac{2}{23} a^{5} + \frac{4}{23} a^{4} - \frac{7}{23} a^{3} - \frac{5}{23} a^{2} + \frac{7}{23} a$, $\frac{1}{1474556187240368443531} a^{19} + \frac{28310129605725710226}{1474556187240368443531} a^{18} - \frac{21592429283028884572}{1474556187240368443531} a^{17} + \frac{670289997081452608532}{1474556187240368443531} a^{16} - \frac{313692098268042259589}{1474556187240368443531} a^{15} - \frac{642813352625343266390}{1474556187240368443531} a^{14} - \frac{711652086693019695282}{1474556187240368443531} a^{13} - \frac{342688385941601305006}{1474556187240368443531} a^{12} + \frac{281934784009851368697}{1474556187240368443531} a^{11} + \frac{256507758230304772911}{1474556187240368443531} a^{10} + \frac{414879421788235705722}{1474556187240368443531} a^{9} - \frac{11022561587525570003}{64111138575668193197} a^{8} + \frac{281551096651316618671}{1474556187240368443531} a^{7} + \frac{540470468680028101461}{1474556187240368443531} a^{6} + \frac{42862716793398300453}{1474556187240368443531} a^{5} - \frac{11644654090077279118}{64111138575668193197} a^{4} - \frac{129427291085941971482}{1474556187240368443531} a^{3} + \frac{157764807024783118785}{1474556187240368443531} a^{2} + \frac{512594985779209067951}{1474556187240368443531} a + \frac{9177479123942858551}{64111138575668193197}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5171060698.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n314 |
| Character table for t20n314 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1834268944717.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 43 | Data not computed | ||||||
| 199 | Data not computed | ||||||