Properties

Label 20.20.2437199735...5936.1
Degree $20$
Signature $[20, 0]$
Discriminant $2^{30}\cdot 7^{8}\cdot 13^{14}$
Root discriminant $37.10$
Ramified primes $2, 7, 13$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times F_5$ (as 20T13)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 20, 104, -84, -1317, -450, 5842, 2810, -12172, -4478, 13443, 2452, -8161, -6, 2668, -412, -413, 122, 17, -10, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 10*x^19 + 17*x^18 + 122*x^17 - 413*x^16 - 412*x^15 + 2668*x^14 - 6*x^13 - 8161*x^12 + 2452*x^11 + 13443*x^10 - 4478*x^9 - 12172*x^8 + 2810*x^7 + 5842*x^6 - 450*x^5 - 1317*x^4 - 84*x^3 + 104*x^2 + 20*x + 1)
 
gp: K = bnfinit(x^20 - 10*x^19 + 17*x^18 + 122*x^17 - 413*x^16 - 412*x^15 + 2668*x^14 - 6*x^13 - 8161*x^12 + 2452*x^11 + 13443*x^10 - 4478*x^9 - 12172*x^8 + 2810*x^7 + 5842*x^6 - 450*x^5 - 1317*x^4 - 84*x^3 + 104*x^2 + 20*x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - 10 x^{19} + 17 x^{18} + 122 x^{17} - 413 x^{16} - 412 x^{15} + 2668 x^{14} - 6 x^{13} - 8161 x^{12} + 2452 x^{11} + 13443 x^{10} - 4478 x^{9} - 12172 x^{8} + 2810 x^{7} + 5842 x^{6} - 450 x^{5} - 1317 x^{4} - 84 x^{3} + 104 x^{2} + 20 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[20, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(24371997355510472326748292775936=2^{30}\cdot 7^{8}\cdot 13^{14}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $37.10$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{6}{23} a^{16} - \frac{6}{23} a^{15} + \frac{1}{23} a^{14} - \frac{7}{23} a^{13} - \frac{8}{23} a^{12} + \frac{8}{23} a^{11} + \frac{11}{23} a^{10} + \frac{2}{23} a^{9} - \frac{5}{23} a^{8} + \frac{4}{23} a^{7} - \frac{3}{23} a^{6} + \frac{5}{23} a^{5} + \frac{2}{23} a^{4} + \frac{10}{23} a^{3} + \frac{11}{23} a^{2} + \frac{4}{23} a - \frac{1}{23}$, $\frac{1}{23} a^{18} + \frac{4}{23} a^{16} + \frac{11}{23} a^{15} - \frac{1}{23} a^{14} - \frac{4}{23} a^{13} + \frac{6}{23} a^{12} - \frac{10}{23} a^{11} - \frac{1}{23} a^{10} + \frac{7}{23} a^{9} - \frac{3}{23} a^{8} - \frac{2}{23} a^{7} + \frac{10}{23} a^{6} + \frac{9}{23} a^{5} - \frac{1}{23} a^{4} + \frac{2}{23} a^{3} + \frac{1}{23} a^{2} - \frac{6}{23}$, $\frac{1}{1068843606114361} a^{19} + \frac{933655610676}{46471461135407} a^{18} - \frac{2125406832207}{152691943730623} a^{17} + \frac{223396158700886}{1068843606114361} a^{16} + \frac{478301404565779}{1068843606114361} a^{15} + \frac{442860222315802}{1068843606114361} a^{14} - \frac{213299024905508}{1068843606114361} a^{13} - \frac{316453908854660}{1068843606114361} a^{12} + \frac{182593172401595}{1068843606114361} a^{11} + \frac{482664821087496}{1068843606114361} a^{10} - \frac{2926390718444}{97167600555851} a^{9} - \frac{259902413724383}{1068843606114361} a^{8} + \frac{142852425679247}{1068843606114361} a^{7} - \frac{384245515057545}{1068843606114361} a^{6} - \frac{242908764602786}{1068843606114361} a^{5} + \frac{622785587597}{5265239438987} a^{4} - \frac{227952186250440}{1068843606114361} a^{3} + \frac{338973796726020}{1068843606114361} a^{2} + \frac{447881994047374}{1068843606114361} a - \frac{387426056468107}{1068843606114361}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2218512101.18 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times F_5$ (as 20T13):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40
The 10 conjugacy class representatives for $C_2\times F_5$
Character table for $C_2\times F_5$

Intermediate fields

\(\Q(\sqrt{26}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{2}, \sqrt{13})\), 5.5.6889792.1, 10.10.4936800315539456.1, 10.10.379753870426112.1, 10.10.617100039442432.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 10 siblings: data not computed
Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
2.8.12.1$x^{8} + 6 x^{6} + 8 x^{5} + 16$$2$$4$$12$$C_4\times C_2$$[3]^{4}$
$7$7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$13$13.4.2.1$x^{4} + 39 x^{2} + 676$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
13.8.6.1$x^{8} - 13 x^{4} + 2704$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$