Normalized defining polynomial
\( x^{20} - 8 x^{19} - 33 x^{18} + 439 x^{17} - 416 x^{16} - 6513 x^{15} + 17832 x^{14} + 27381 x^{13} - 162275 x^{12} + 97727 x^{11} + 488062 x^{10} - 917700 x^{9} + 78546 x^{8} + 1375989 x^{7} - 1649718 x^{6} + 712238 x^{5} + 38154 x^{4} - 135903 x^{3} + 38629 x^{2} - 2310 x - 121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23846398539764122605523970477353515625=5^{10}\cdot 23^{8}\cdot 89^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23, 89$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{2}{11} a^{15} - \frac{5}{11} a^{14} - \frac{1}{11} a^{13} - \frac{2}{11} a^{12} - \frac{1}{11} a^{11} - \frac{4}{11} a^{10} - \frac{4}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} - \frac{3}{11} a^{6} + \frac{4}{11} a^{5} - \frac{1}{11} a^{4} - \frac{4}{11} a^{3} - \frac{4}{11} a^{2} + \frac{3}{11} a$, $\frac{1}{11} a^{17} + \frac{2}{11} a^{15} - \frac{2}{11} a^{14} + \frac{3}{11} a^{12} - \frac{2}{11} a^{11} + \frac{4}{11} a^{10} - \frac{2}{11} a^{9} - \frac{3}{11} a^{8} - \frac{1}{11} a^{7} - \frac{1}{11} a^{6} + \frac{2}{11} a^{5} - \frac{2}{11} a^{4} + \frac{4}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{605} a^{18} + \frac{23}{605} a^{17} - \frac{24}{605} a^{16} + \frac{278}{605} a^{15} + \frac{238}{605} a^{14} + \frac{128}{605} a^{13} + \frac{53}{605} a^{12} + \frac{72}{605} a^{11} + \frac{19}{121} a^{10} + \frac{14}{55} a^{9} + \frac{201}{605} a^{8} + \frac{18}{121} a^{7} + \frac{167}{605} a^{6} - \frac{269}{605} a^{5} - \frac{45}{121} a^{4} - \frac{101}{605} a^{3} + \frac{208}{605} a^{2} - \frac{106}{605} a - \frac{14}{55}$, $\frac{1}{43761384866925207176226968359825} a^{19} - \frac{3269467663619536295403927422}{8752276973385041435245393671965} a^{18} - \frac{1982234146925487233468699168743}{43761384866925207176226968359825} a^{17} - \frac{6008233186236662559123640433}{8752276973385041435245393671965} a^{16} + \frac{11293478213218218193215172832159}{43761384866925207176226968359825} a^{15} + \frac{11433850489678872469277368717404}{43761384866925207176226968359825} a^{14} + \frac{8872502414202738881839013025484}{43761384866925207176226968359825} a^{13} - \frac{1337554418187417950578984952627}{43761384866925207176226968359825} a^{12} + \frac{17541564665385367305334956427164}{43761384866925207176226968359825} a^{11} + \frac{6189503502239965454778705754364}{43761384866925207176226968359825} a^{10} - \frac{114183230834854266745732847266}{43761384866925207176226968359825} a^{9} + \frac{10168743525659637653127872669162}{43761384866925207176226968359825} a^{8} - \frac{7504543971128728784287519600808}{43761384866925207176226968359825} a^{7} - \frac{262053420704078965402904706644}{8752276973385041435245393671965} a^{6} - \frac{4380809453213947802392967553963}{43761384866925207176226968359825} a^{5} - \frac{9282210868518431899797080747316}{43761384866925207176226968359825} a^{4} + \frac{6039974209693234031532961084036}{43761384866925207176226968359825} a^{3} - \frac{3813864024678370376440754238404}{8752276973385041435245393671965} a^{2} - \frac{8643609340497646666829704821571}{43761384866925207176226968359825} a - \frac{1780823028362169637945581693258}{3978307715175018834202451669075}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2155949009410 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\wr C_2$ (as 20T55):
| A solvable group of order 200 |
| The 14 conjugacy class representatives for $D_5\wr C_2$ |
| Character table for $D_5\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{445}) \), \(\Q(\sqrt{89}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{89})\), 10.10.4883277438336278125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.10.8.1 | $x^{10} - 23 x^{5} + 3703$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 89 | Data not computed | ||||||