Normalized defining polynomial
\( x^{20} - 120 x^{18} + 6120 x^{16} - 195 x^{15} - 172800 x^{14} + 17550 x^{13} + 2948400 x^{12} - 631800 x^{11} - 31122351 x^{10} + 11583000 x^{9} + 199389060 x^{8} - 113724000 x^{7} - 722962260 x^{6} + 573003188 x^{5} + 1247950800 x^{4} - 1268735640 x^{3} - 594572400 x^{2} + 788973840 x - 96466096 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23728917159905058454721084594726562500000000=2^{8}\cdot 5^{24}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{32392640900} a^{15} - \frac{9}{3239264090} a^{13} + \frac{162}{1619632045} a^{11} - \frac{5166429967}{32392640900} a^{10} - \frac{594}{323926409} a^{9} - \frac{697030549}{1619632045} a^{8} + \frac{5832}{323926409} a^{7} + \frac{60953124}{1619632045} a^{6} - \frac{3096059127}{32392640900} a^{5} - \frac{150766271}{323926409} a^{4} - \frac{437779689}{3239264090} a^{3} + \frac{128372404}{323926409} a^{2} - \frac{304543378}{1619632045} a - \frac{1773563192}{8098160225}$, $\frac{1}{32392640900} a^{16} - \frac{9}{3239264090} a^{14} + \frac{162}{1619632045} a^{12} - \frac{5166429967}{32392640900} a^{11} - \frac{594}{323926409} a^{10} - \frac{697030549}{1619632045} a^{9} + \frac{5832}{323926409} a^{8} + \frac{60953124}{1619632045} a^{7} - \frac{3096059127}{32392640900} a^{6} - \frac{150766271}{323926409} a^{5} - \frac{437779689}{3239264090} a^{4} + \frac{128372404}{323926409} a^{3} - \frac{304543378}{1619632045} a^{2} - \frac{1773563192}{8098160225} a$, $\frac{1}{32392640900} a^{17} - \frac{243}{1619632045} a^{13} - \frac{5166429967}{32392640900} a^{12} + \frac{2322}{323926409} a^{11} + \frac{697030549}{3239264090} a^{10} - \frac{47628}{323926409} a^{9} + \frac{493853469}{1619632045} a^{8} - \frac{3043571127}{32392640900} a^{7} - \frac{25389266}{323926409} a^{6} + \frac{425532489}{1619632045} a^{5} - \frac{159609217}{323926409} a^{4} - \frac{569044843}{1619632045} a^{3} + \frac{3628737933}{8098160225} a^{2} + \frac{24968149}{323926409} a + \frac{468503444}{1619632045}$, $\frac{1}{37245123292101800} a^{18} - \frac{21101}{1862256164605090} a^{17} - \frac{27}{9311280823025450} a^{16} + \frac{251683}{18622561646050900} a^{15} + \frac{243}{1862256164605090} a^{14} - \frac{6005210071884907}{37245123292101800} a^{13} + \frac{621585031273021}{1862256164605090} a^{12} - \frac{7890078553363267}{18622561646050900} a^{11} - \frac{2438239976114761}{18622561646050900} a^{10} - \frac{539140018137829}{1862256164605090} a^{9} - \frac{2338313467050507}{37245123292101800} a^{8} - \frac{134880566300517}{372451232921018} a^{7} - \frac{634766015855603}{4655640411512725} a^{6} - \frac{6293266799985441}{18622561646050900} a^{5} - \frac{62350245407441}{931128082302545} a^{4} + \frac{1313887378468173}{9311280823025450} a^{3} - \frac{225801629709719}{931128082302545} a^{2} + \frac{74404389404983}{4655640411512725} a - \frac{1666484069930411}{4655640411512725}$, $\frac{1}{37245123292101800} a^{19} - \frac{57}{18622561646050900} a^{17} - \frac{58129}{9311280823025450} a^{16} + \frac{684}{4655640411512725} a^{15} - \frac{6005212056672727}{37245123292101800} a^{14} - \frac{3591}{931128082302545} a^{13} - \frac{137047680035863}{300363897516950} a^{12} - \frac{2945196461581437}{9311280823025450} a^{11} + \frac{530561569016019}{9311280823025450} a^{10} + \frac{3961856714549853}{37245123292101800} a^{9} - \frac{360301353442032}{931128082302545} a^{8} - \frac{277513674887781}{600727795033900} a^{7} + \frac{4392052940456373}{9311280823025450} a^{6} - \frac{3515848987697411}{9311280823025450} a^{5} + \frac{1998613002842009}{4655640411512725} a^{4} + \frac{459650300609349}{931128082302545} a^{3} - \frac{1605013478916676}{4655640411512725} a^{2} - \frac{938077260903429}{4655640411512725} a + \frac{606431665456013}{4655640411512725}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4001313805280000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 10.10.452563285156250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.10.14.8 | $x^{10} + 5 x^{8} + 20 x^{6} + 10 x^{5} + 5 x^{4} + 10 x^{2} + 12$ | $5$ | $2$ | $14$ | $F_{5}\times C_2$ | $[7/4]_{4}^{2}$ |
| 5.10.10.7 | $x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 41 | Data not computed | ||||||