Normalized defining polynomial
\( x^{20} - x^{19} - 57 x^{18} + 66 x^{17} + 1198 x^{16} - 1526 x^{15} - 12200 x^{14} + 17240 x^{13} + 64636 x^{12} - 104480 x^{11} - 174550 x^{10} + 341431 x^{9} + 205983 x^{8} - 586336 x^{7} - 12337 x^{6} + 478381 x^{5} - 146594 x^{4} - 137680 x^{3} + 63070 x^{2} + 8405 x - 4645 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21333423461884919389012763702392578125=5^{15}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(155=5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{155}(64,·)$, $\chi_{155}(1,·)$, $\chi_{155}(66,·)$, $\chi_{155}(4,·)$, $\chi_{155}(77,·)$, $\chi_{155}(16,·)$, $\chi_{155}(147,·)$, $\chi_{155}(23,·)$, $\chi_{155}(153,·)$, $\chi_{155}(27,·)$, $\chi_{155}(92,·)$, $\chi_{155}(58,·)$, $\chi_{155}(94,·)$, $\chi_{155}(101,·)$, $\chi_{155}(39,·)$, $\chi_{155}(108,·)$, $\chi_{155}(109,·)$, $\chi_{155}(122,·)$, $\chi_{155}(123,·)$, $\chi_{155}(126,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{15} + \frac{1}{5} a^{12} + \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{15} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4}$, $\frac{1}{3095} a^{18} - \frac{168}{3095} a^{17} + \frac{57}{3095} a^{16} + \frac{1449}{3095} a^{15} - \frac{1239}{3095} a^{14} + \frac{266}{619} a^{13} + \frac{378}{3095} a^{12} - \frac{255}{619} a^{11} + \frac{1408}{3095} a^{10} - \frac{56}{619} a^{9} - \frac{1448}{3095} a^{8} + \frac{368}{3095} a^{7} - \frac{1}{5} a^{6} - \frac{1209}{3095} a^{5} + \frac{152}{3095} a^{4} + \frac{216}{619} a^{3} + \frac{302}{619} a^{2} - \frac{198}{619} a + \frac{217}{619}$, $\frac{1}{1142770404775246457728326362056225} a^{19} - \frac{147644369169537332652980171604}{1142770404775246457728326362056225} a^{18} + \frac{4191839919646701769831380530146}{45710816191009858309133054482249} a^{17} - \frac{73846108351329951030909952493034}{1142770404775246457728326362056225} a^{16} - \frac{103949715341984625420229535174157}{228554080955049291545665272411245} a^{15} - \frac{186982074240470167769859427392581}{1142770404775246457728326362056225} a^{14} - \frac{128118581724046315988410467596712}{1142770404775246457728326362056225} a^{13} + \frac{155653287309513488501469391339311}{1142770404775246457728326362056225} a^{12} - \frac{398969024708578000435834407617407}{1142770404775246457728326362056225} a^{11} + \frac{524162513247643574281854356484501}{1142770404775246457728326362056225} a^{10} - \frac{302723380704464937364247858082013}{1142770404775246457728326362056225} a^{9} + \frac{12521537923109280680112075591351}{228554080955049291545665272411245} a^{8} + \frac{217132950119565331880919781356388}{1142770404775246457728326362056225} a^{7} + \frac{97051421677546301796666515193697}{228554080955049291545665272411245} a^{6} - \frac{503204555778300340552523269516842}{1142770404775246457728326362056225} a^{5} - \frac{443017724419012442083711477126598}{1142770404775246457728326362056225} a^{4} - \frac{13446756289583722653674067515676}{228554080955049291545665272411245} a^{3} + \frac{50676870164432960674516785171232}{228554080955049291545665272411245} a^{2} - \frac{43499705781688316794821034280967}{228554080955049291545665272411245} a - \frac{60561366972531604526174246059473}{228554080955049291545665272411245}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3696529687160 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.120125.1, 5.5.923521.1, 10.10.2665284492003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $31$ | 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 31.10.9.8 | $x^{10} + 521017$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |