Normalized defining polynomial
\( x^{20} - 8 x^{19} - 33 x^{18} + 347 x^{17} + 257 x^{16} - 5846 x^{15} + 2463 x^{14} + 48956 x^{13} - 51892 x^{12} - 214995 x^{11} + 334300 x^{10} + 466727 x^{9} - 1021695 x^{8} - 352662 x^{7} + 1529604 x^{6} - 241444 x^{5} - 1034673 x^{4} + 467149 x^{3} + 212326 x^{2} - 161926 x + 22307 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2108097156584902878904709960659367677=11^{16}\cdot 43^{5}\cdot 199^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{2}{11} a^{12} + \frac{3}{11} a^{11} + \frac{2}{11} a^{10} + \frac{3}{11} a^{9} + \frac{4}{11} a^{8} - \frac{2}{11} a^{7} + \frac{2}{11} a^{6} + \frac{1}{11} a^{5} + \frac{2}{11} a^{4} - \frac{2}{11} a^{2} + \frac{2}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{14} - \frac{1}{11} a^{12} - \frac{3}{11} a^{11} - \frac{4}{11} a^{10} - \frac{1}{11} a^{9} - \frac{5}{11} a^{8} - \frac{2}{11} a^{7} + \frac{5}{11} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{4} - \frac{2}{11} a^{3} - \frac{2}{11} a^{2} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{15} - \frac{5}{11} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} + \frac{2}{11} a^{8} + \frac{3}{11} a^{7} - \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} - \frac{4}{11} a - \frac{3}{11}$, $\frac{1}{11} a^{16} + \frac{5}{11} a^{11} - \frac{3}{11} a^{10} - \frac{5}{11} a^{9} + \frac{1}{11} a^{8} - \frac{4}{11} a^{7} + \frac{4}{11} a^{6} + \frac{5}{11} a^{5} - \frac{3}{11} a^{4} - \frac{1}{11} a^{3} - \frac{3}{11} a^{2} - \frac{4}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{12} - \frac{3}{11} a^{11} - \frac{5}{11} a^{10} + \frac{1}{11} a^{9} - \frac{4}{11} a^{8} + \frac{4}{11} a^{7} + \frac{5}{11} a^{6} - \frac{3}{11} a^{5} - \frac{1}{11} a^{4} - \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{4}{11} a$, $\frac{1}{11} a^{18} - \frac{4}{11} a^{12} + \frac{2}{11} a^{11} + \frac{2}{11} a^{10} + \frac{3}{11} a^{9} - \frac{5}{11} a^{8} + \frac{4}{11} a^{7} - \frac{2}{11} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} - \frac{4}{11} a^{3} - \frac{5}{11} a^{2} + \frac{1}{11} a + \frac{4}{11}$, $\frac{1}{160296562191323591332202877953760143} a^{19} - \frac{512155310364653093839979374097585}{14572414744665781030200261632160013} a^{18} + \frac{376712545355184485412362407295827}{14572414744665781030200261632160013} a^{17} - \frac{98242666101374941713833714716566}{160296562191323591332202877953760143} a^{16} - \frac{7149858927075410521144714955242064}{160296562191323591332202877953760143} a^{15} + \frac{1927125033452695180325157152789534}{160296562191323591332202877953760143} a^{14} + \frac{858628687592119083571199152628078}{160296562191323591332202877953760143} a^{13} + \frac{30625364907601479606288979191400386}{160296562191323591332202877953760143} a^{12} - \frac{74439211715895309360269957311041320}{160296562191323591332202877953760143} a^{11} - \frac{3493835354303508766038077881769454}{160296562191323591332202877953760143} a^{10} - \frac{31030250470332223844676507120782532}{160296562191323591332202877953760143} a^{9} - \frac{27155080044925589965053030546949411}{160296562191323591332202877953760143} a^{8} + \frac{42242841110826090822012976966835}{1223637879323080849864144106517253} a^{7} - \frac{10624138284382933447724376891344854}{160296562191323591332202877953760143} a^{6} - \frac{8354157581853420867474727032509605}{160296562191323591332202877953760143} a^{5} - \frac{64568112324736702801944251670849459}{160296562191323591332202877953760143} a^{4} + \frac{70435214385672235997387164389106424}{160296562191323591332202877953760143} a^{3} + \frac{69706764821475434707293257522005820}{160296562191323591332202877953760143} a^{2} - \frac{32399190891416509014545773059538427}{160296562191323591332202877953760143} a - \frac{9894563186347255179552980753867652}{160296562191323591332202877953760143}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 334019448168 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.15695839359943369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 43 | Data not computed | ||||||
| 199 | Data not computed | ||||||