Normalized defining polynomial
\( x^{20} - 6 x^{19} - 43 x^{18} + 292 x^{17} + 651 x^{16} - 5652 x^{15} - 3017 x^{14} + 55069 x^{13} - 21081 x^{12} - 278393 x^{11} + 287287 x^{10} + 648233 x^{9} - 1112755 x^{8} - 339422 x^{7} + 1572788 x^{6} - 665992 x^{5} - 512025 x^{4} + 473717 x^{3} - 97022 x^{2} - 2652 x + 23 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2108097156584902878904709960659367677=11^{16}\cdot 43^{5}\cdot 199^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $65.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 43, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{67} a^{17} + \frac{1}{67} a^{16} + \frac{4}{67} a^{15} + \frac{14}{67} a^{14} + \frac{27}{67} a^{13} + \frac{11}{67} a^{12} - \frac{4}{67} a^{11} - \frac{24}{67} a^{10} - \frac{23}{67} a^{9} - \frac{13}{67} a^{8} - \frac{19}{67} a^{7} + \frac{10}{67} a^{6} - \frac{30}{67} a^{5} - \frac{3}{67} a^{4} - \frac{28}{67} a^{3} + \frac{2}{67} a^{2} - \frac{12}{67} a - \frac{4}{67}$, $\frac{1}{8777} a^{18} - \frac{37}{8777} a^{17} + \frac{2512}{8777} a^{16} + \frac{800}{8777} a^{15} + \frac{768}{8777} a^{14} + \frac{3876}{8777} a^{13} + \frac{2526}{8777} a^{12} - \frac{4294}{8777} a^{11} - \frac{4337}{8777} a^{10} + \frac{2603}{8777} a^{9} + \frac{207}{8777} a^{8} - \frac{1881}{8777} a^{7} - \frac{1616}{8777} a^{6} - \frac{1409}{8777} a^{5} - \frac{3599}{8777} a^{4} - \frac{1480}{8777} a^{3} - \frac{490}{8777} a^{2} + \frac{385}{8777} a - \frac{2528}{8777}$, $\frac{1}{3786439099538957723091526177886377} a^{19} - \frac{87331968536194615920889770068}{3786439099538957723091526177886377} a^{18} - \frac{2786662823830129173085484974952}{3786439099538957723091526177886377} a^{17} - \frac{1291742039065811492199473206645286}{3786439099538957723091526177886377} a^{16} + \frac{1861603390647958016115179996985768}{3786439099538957723091526177886377} a^{15} + \frac{875471220371121508470850352602738}{3786439099538957723091526177886377} a^{14} - \frac{752915853355395937336343182389752}{3786439099538957723091526177886377} a^{13} - \frac{332313955891682292746214203184464}{3786439099538957723091526177886377} a^{12} + \frac{1874364163729759233090490098176671}{3786439099538957723091526177886377} a^{11} + \frac{1063363728177932186045615668024702}{3786439099538957723091526177886377} a^{10} - \frac{1855664470244235356068218655683984}{3786439099538957723091526177886377} a^{9} + \frac{193527575260380807598689382326529}{3786439099538957723091526177886377} a^{8} + \frac{1746621799838662278069386489408685}{3786439099538957723091526177886377} a^{7} + \frac{1304848980606290851520354546624465}{3786439099538957723091526177886377} a^{6} + \frac{567979414935711285629491069012496}{3786439099538957723091526177886377} a^{5} - \frac{1692639671856449930340059699248292}{3786439099538957723091526177886377} a^{4} + \frac{822064412166523633360547538003095}{3786439099538957723091526177886377} a^{3} - \frac{55049301301941576618565581907963}{3786439099538957723091526177886377} a^{2} - \frac{737172130433579843962593248299839}{3786439099538957723091526177886377} a - \frac{594496606067952091252012006184351}{3786439099538957723091526177886377}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 321368494636 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 44 conjugacy class representatives for t20n310 |
| Character table for t20n310 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.15695839359943369.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 43 | Data not computed | ||||||
| 199 | Data not computed | ||||||