Normalized defining polynomial
\( x^{20} - 8 x^{19} - 7 x^{18} + 219 x^{17} - 387 x^{16} - 1897 x^{15} + 6363 x^{14} + 4692 x^{13} - 39284 x^{12} + 18927 x^{11} + 114437 x^{10} - 137699 x^{9} - 143822 x^{8} + 309409 x^{7} + 15158 x^{6} - 295673 x^{5} + 105445 x^{4} + 103459 x^{3} - 55470 x^{2} - 9313 x + 5431 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(201997953325162874882560000000000=2^{18}\cdot 5^{10}\cdot 307^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 307$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{2}{11} a^{17} + \frac{4}{11} a^{16} - \frac{1}{11} a^{15} - \frac{4}{11} a^{14} + \frac{3}{11} a^{13} - \frac{3}{11} a^{12} + \frac{2}{11} a^{11} - \frac{5}{11} a^{10} + \frac{1}{11} a^{9} + \frac{5}{11} a^{8} - \frac{3}{11} a^{7} + \frac{1}{11} a^{6} + \frac{4}{11} a^{5} + \frac{3}{11} a^{4} - \frac{4}{11} a^{3} + \frac{3}{11}$, $\frac{1}{110682730818169807} a^{19} + \frac{562215352932296}{110682730818169807} a^{18} - \frac{51543908954166601}{110682730818169807} a^{17} - \frac{33615920853595503}{110682730818169807} a^{16} + \frac{2863885732046666}{110682730818169807} a^{15} - \frac{26736621329228463}{110682730818169807} a^{14} - \frac{846164966367969}{110682730818169807} a^{13} - \frac{13597328584234676}{110682730818169807} a^{12} - \frac{36883028776913546}{110682730818169807} a^{11} - \frac{52863620930725478}{110682730818169807} a^{10} - \frac{44532501218277365}{110682730818169807} a^{9} + \frac{23985591106739672}{110682730818169807} a^{8} + \frac{38579322410586709}{110682730818169807} a^{7} - \frac{52719801845076605}{110682730818169807} a^{6} - \frac{43661442372641996}{110682730818169807} a^{5} - \frac{40205618326342971}{110682730818169807} a^{4} + \frac{457599318339013}{110682730818169807} a^{3} - \frac{2392623095207295}{10062066438015437} a^{2} + \frac{24155960859790884}{110682730818169807} a - \frac{8611985978957078}{110682730818169807}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6896317800.91 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 20T62):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.568503936064000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 307 | Data not computed | ||||||