Normalized defining polynomial
\( x^{20} - 179 x^{18} + 13413 x^{16} - 557393 x^{14} + 14304640 x^{12} - 237925889 x^{10} + 2606127441 x^{8} - 18610574474 x^{6} + 83093153544 x^{4} - 209841439956 x^{2} + 227988105361 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(198414240316397285634688570992640000000000=2^{20}\cdot 5^{10}\cdot 419^{2}\cdot 691^{4}\cdot 695771^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $116.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 419, 691, 695771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{691} a^{14} - \frac{179}{691} a^{12} + \frac{284}{691} a^{10} + \frac{244}{691} a^{8} + \frac{249}{691} a^{6} - \frac{78}{691} a^{4} + \frac{211}{691} a^{2}$, $\frac{1}{691} a^{15} - \frac{179}{691} a^{13} + \frac{284}{691} a^{11} + \frac{244}{691} a^{9} + \frac{249}{691} a^{7} - \frac{78}{691} a^{5} + \frac{211}{691} a^{3}$, $\frac{1}{477481} a^{16} - \frac{179}{477481} a^{14} + \frac{13413}{477481} a^{12} - \frac{79912}{477481} a^{10} - \frac{19790}{477481} a^{8} - \frac{140351}{477481} a^{6} + \frac{36143}{477481} a^{4} + \frac{293}{691} a^{2}$, $\frac{1}{477481} a^{17} - \frac{179}{477481} a^{15} + \frac{13413}{477481} a^{13} - \frac{79912}{477481} a^{11} - \frac{19790}{477481} a^{9} - \frac{140351}{477481} a^{7} + \frac{36143}{477481} a^{5} + \frac{293}{691} a^{3}$, $\frac{1}{3606396087676694090000213975201} a^{18} - \frac{340477939585708754256074}{3606396087676694090000213975201} a^{16} + \frac{323533147426375774964519853}{3606396087676694090000213975201} a^{14} - \frac{265486743533019493783912009091}{3606396087676694090000213975201} a^{12} - \frac{179279659105884690432681302148}{3606396087676694090000213975201} a^{10} - \frac{1631705774539108331308898112260}{3606396087676694090000213975201} a^{8} - \frac{834181769677751071985440252004}{3606396087676694090000213975201} a^{6} + \frac{1250996377725566636253141573}{5219097087809976975398283611} a^{4} + \frac{2557266255836061580818696}{7552962500448591860200121} a^{2} + \frac{3917584645869242290579}{10930481187335154645731}$, $\frac{1}{3606396087676694090000213975201} a^{19} - \frac{340477939585708754256074}{3606396087676694090000213975201} a^{17} + \frac{323533147426375774964519853}{3606396087676694090000213975201} a^{15} - \frac{265486743533019493783912009091}{3606396087676694090000213975201} a^{13} - \frac{179279659105884690432681302148}{3606396087676694090000213975201} a^{11} - \frac{1631705774539108331308898112260}{3606396087676694090000213975201} a^{9} - \frac{834181769677751071985440252004}{3606396087676694090000213975201} a^{7} + \frac{1250996377725566636253141573}{5219097087809976975398283611} a^{5} + \frac{2557266255836061580818696}{7552962500448591860200121} a^{3} + \frac{3917584645869242290579}{10930481187335154645731} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148111807278000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1030 are not computed |
| Character table for t20n1030 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.911025153125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 419 | Data not computed | ||||||
| 691 | Data not computed | ||||||
| 695771 | Data not computed | ||||||