Normalized defining polynomial
\( x^{20} - 4 x^{19} - 45 x^{18} + 167 x^{17} + 788 x^{16} - 2640 x^{15} - 7020 x^{14} + 20694 x^{13} + 35038 x^{12} - 88642 x^{11} - 101908 x^{10} + 213724 x^{9} + 174189 x^{8} - 285884 x^{7} - 172211 x^{6} + 198770 x^{5} + 94551 x^{4} - 62457 x^{3} - 25936 x^{2} + 6887 x + 2707 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1935503049159664173634294979108883566289=3^{10}\cdot 11^{16}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{19476694796975112694222635810175576681} a^{19} + \frac{442292413833000358244173986113355104}{19476694796975112694222635810175576681} a^{18} + \frac{488907766068440401437457261992336427}{19476694796975112694222635810175576681} a^{17} - \frac{1030400764838669245124910730142989226}{19476694796975112694222635810175576681} a^{16} - \frac{8947452671455968802051975419373343625}{19476694796975112694222635810175576681} a^{15} + \frac{5999179404544121769197415048387993383}{19476694796975112694222635810175576681} a^{14} - \frac{1154519781062948455629553878947764879}{19476694796975112694222635810175576681} a^{13} - \frac{9552164113296614767921262488560261568}{19476694796975112694222635810175576681} a^{12} - \frac{186340094308178601129168433609315265}{19476694796975112694222635810175576681} a^{11} + \frac{1343466617587488238221950785759659954}{19476694796975112694222635810175576681} a^{10} - \frac{2368602152739203355585705876027602535}{19476694796975112694222635810175576681} a^{9} - \frac{4513641199466935118203089488219735505}{19476694796975112694222635810175576681} a^{8} + \frac{6981588297644171575027754357670047269}{19476694796975112694222635810175576681} a^{7} + \frac{93871054131695355972636989002681166}{19476694796975112694222635810175576681} a^{6} - \frac{5040176764190145696134558278530325199}{19476694796975112694222635810175576681} a^{5} + \frac{8633333430286364929148708035555624032}{19476694796975112694222635810175576681} a^{4} + \frac{198299857595211655351351567884576509}{19476694796975112694222635810175576681} a^{3} + \frac{6477980682208320213327191144227461585}{19476694796975112694222635810175576681} a^{2} - \frac{2342121471056691230809701688883728361}{19476694796975112694222635810175576681} a + \frac{7630101764573699630191663972765426336}{19476694796975112694222635810175576681}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13755912027100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times A_4$ (as 20T14):
| A solvable group of order 60 |
| The 20 conjugacy class representatives for $C_5\times A_4$ |
| Character table for $C_5\times A_4$ |
Intermediate fields
| 4.4.33489.1, \(\Q(\zeta_{11})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | R | $15{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 61 | Data not computed | ||||||