Normalized defining polynomial
\( x^{20} - x^{19} - 95 x^{18} + 164 x^{17} + 3369 x^{16} - 7746 x^{15} - 55436 x^{14} + 153799 x^{13} + 444659 x^{12} - 1476304 x^{11} - 1612214 x^{10} + 7068645 x^{9} + 1538915 x^{8} - 16039436 x^{7} + 3739572 x^{6} + 14603214 x^{5} - 7251611 x^{4} - 2917719 x^{3} + 2153723 x^{2} - 259240 x - 403 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(193436331687014863594648221771906658401=3^{6}\cdot 59^{6}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 59, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{17} + \frac{1}{6} a^{16} - \frac{5}{12} a^{14} - \frac{1}{3} a^{13} + \frac{5}{12} a^{12} - \frac{1}{2} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} - \frac{1}{12} a^{4} + \frac{1}{3} a^{3} + \frac{1}{4} a^{2} + \frac{5}{12} a - \frac{5}{12}$, $\frac{1}{24} a^{18} - \frac{1}{24} a^{17} - \frac{1}{4} a^{16} - \frac{5}{24} a^{15} + \frac{11}{24} a^{14} - \frac{7}{24} a^{13} - \frac{3}{8} a^{12} - \frac{1}{3} a^{11} + \frac{5}{12} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} - \frac{1}{8} a^{7} - \frac{1}{24} a^{6} - \frac{7}{24} a^{5} - \frac{5}{24} a^{4} - \frac{3}{8} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{8}$, $\frac{1}{9600449510091486774724168709004862089372573105743576954256} a^{19} - \frac{41705381985201955688515669946874470010196436147001653381}{2400112377522871693681042177251215522343143276435894238564} a^{18} + \frac{36329445681976718695614585230447420128145499557918499633}{1066716612232387419413796523222762454374730345082619661584} a^{17} + \frac{1268963877811234788387515543149339624311909515576355284885}{9600449510091486774724168709004862089372573105743576954256} a^{16} + \frac{2215914954624385817398714455308820839424873757730947242761}{4800224755045743387362084354502431044686286552871788477128} a^{15} + \frac{1095687300876666761034356546368834133831740530612543636467}{2400112377522871693681042177251215522343143276435894238564} a^{14} - \frac{854943404294976030584271131470891789065879144647159243533}{2400112377522871693681042177251215522343143276435894238564} a^{13} - \frac{2802310270476204533137859604842448992910718395278497992385}{9600449510091486774724168709004862089372573105743576954256} a^{12} + \frac{571020261859890788569247864798512048798990172237051427595}{1600074918348581129120694784834143681562095517623929492376} a^{11} - \frac{99766919775150492161933764520577585479012625770333307611}{4800224755045743387362084354502431044686286552871788477128} a^{10} - \frac{957023894057985687829217443186503523676832684990048085579}{2400112377522871693681042177251215522343143276435894238564} a^{9} + \frac{3611763553657903029537701660198173441807532036497680279865}{9600449510091486774724168709004862089372573105743576954256} a^{8} - \frac{216753393105487493272698476619455519751239819022050305417}{1200056188761435846840521088625607761171571638217947119282} a^{7} + \frac{180429977269779773326343557167194754301997076523654301909}{400018729587145282280173696208535920390523879405982373094} a^{6} + \frac{157323449945062287939795596237523046558510346606803486709}{400018729587145282280173696208535920390523879405982373094} a^{5} - \frac{495151169478335765226375891695374684494461840411147887645}{1600074918348581129120694784834143681562095517623929492376} a^{4} - \frac{3310602231277169298501953221706770101036862199554466920037}{9600449510091486774724168709004862089372573105743576954256} a^{3} - \frac{1148098639228713518164007127013634268574480191351286372597}{2400112377522871693681042177251215522343143276435894238564} a^{2} + \frac{491264889062306393411648044081993334041347093274811807797}{3200149836697162258241389569668287363124191035247858984752} a + \frac{230604968881211378265609936311934242851763410629354501347}{9600449510091486774724168709004862089372573105743576954256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11382647166900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 104 conjugacy class representatives for t20n313 are not computed |
| Character table for t20n313 is not computed |
Intermediate fields
| 5.5.160801.1, 10.10.810072749997729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| $59$ | 59.4.0.1 | $x^{4} - x + 14$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 59.8.6.2 | $x^{8} + 177 x^{4} + 13924$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 59.8.0.1 | $x^{8} - x + 14$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||