Normalized defining polynomial
\( x^{20} - 8 x^{19} - 20 x^{18} + 284 x^{17} - 21 x^{16} - 4198 x^{15} + 3737 x^{14} + 33772 x^{13} - 42360 x^{12} - 162403 x^{11} + 230822 x^{10} + 483926 x^{9} - 710001 x^{8} - 898678 x^{7} + 1266895 x^{6} + 1017051 x^{5} - 1261123 x^{4} - 651709 x^{3} + 616317 x^{2} + 185386 x - 101429 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19184293930982457734868438720703125=3^{10}\cdot 5^{15}\cdot 239^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{239} a^{17} - \frac{22}{239} a^{16} - \frac{74}{239} a^{15} - \frac{68}{239} a^{14} - \frac{40}{239} a^{13} + \frac{89}{239} a^{12} - \frac{41}{239} a^{11} + \frac{22}{239} a^{10} + \frac{7}{239} a^{9} + \frac{18}{239} a^{8} + \frac{65}{239} a^{7} - \frac{44}{239} a^{6} + \frac{18}{239} a^{5} + \frac{62}{239} a^{3} + \frac{114}{239} a^{2} - \frac{60}{239} a - \frac{3}{239}$, $\frac{1}{207691} a^{18} - \frac{94}{207691} a^{17} - \frac{7333}{207691} a^{16} + \frac{26531}{207691} a^{15} - \frac{558}{18881} a^{14} - \frac{64668}{207691} a^{13} - \frac{87231}{207691} a^{12} - \frac{95972}{207691} a^{11} + \frac{27581}{207691} a^{10} - \frac{77444}{207691} a^{9} + \frac{31990}{207691} a^{8} + \frac{37340}{207691} a^{7} - \frac{51545}{207691} a^{6} - \frac{55310}{207691} a^{5} - \frac{18819}{207691} a^{4} + \frac{4428}{18881} a^{3} - \frac{2077}{18881} a^{2} - \frac{16954}{207691} a - \frac{90604}{207691}$, $\frac{1}{11938295449426789181460359} a^{19} - \frac{17480162307417229660}{11938295449426789181460359} a^{18} - \frac{567300216934378706788}{1085299586311526289223669} a^{17} + \frac{2335213626053064882426783}{11938295449426789181460359} a^{16} + \frac{4397819700582035146609}{11938295449426789181460359} a^{15} + \frac{502292987510885878016920}{11938295449426789181460359} a^{14} - \frac{78885982053690226459589}{628331339443515220076861} a^{13} - \frac{5148985795292811211684884}{11938295449426789181460359} a^{12} - \frac{335597785034784414088864}{11938295449426789181460359} a^{11} + \frac{2675237976696079139822791}{11938295449426789181460359} a^{10} + \frac{2034776873893554556464086}{11938295449426789181460359} a^{9} - \frac{120707799674259138763521}{1085299586311526289223669} a^{8} + \frac{5401293377531710291337127}{11938295449426789181460359} a^{7} - \frac{4663425337138317591779096}{11938295449426789181460359} a^{6} - \frac{5140390574695104237554389}{11938295449426789181460359} a^{5} + \frac{969503779882933584326823}{11938295449426789181460359} a^{4} + \frac{415419785483966756145447}{1085299586311526289223669} a^{3} - \frac{2629740126632412671936105}{11938295449426789181460359} a^{2} - \frac{3547195915827483707611086}{11938295449426789181460359} a + \frac{3775808185099302298091}{11938295449426789181460359}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62134578326.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times D_5$ (as 20T6):
| A solvable group of order 40 |
| The 16 conjugacy class representatives for $C_4\times D_5$ |
| Character table for $C_4\times D_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||