Normalized defining polynomial
\( x^{20} - 6 x^{19} - 83 x^{18} + 486 x^{17} + 2769 x^{16} - 15396 x^{15} - 49362 x^{14} + 247119 x^{13} + 530238 x^{12} - 2205189 x^{11} - 3537582 x^{10} + 11214798 x^{9} + 14146635 x^{8} - 31935498 x^{7} - 31272909 x^{6} + 47209428 x^{5} + 32146026 x^{4} - 30429375 x^{3} - 8641610 x^{2} + 6935985 x - 727355 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(185632718133053856685340709503173828125=3^{16}\cdot 5^{15}\cdot 7^{10}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{12} a^{14} - \frac{1}{12} a^{13} - \frac{1}{12} a^{10} - \frac{1}{2} a^{8} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{12} a^{4} + \frac{1}{4} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{12}$, $\frac{1}{348} a^{15} - \frac{5}{174} a^{14} - \frac{1}{116} a^{13} + \frac{7}{174} a^{12} - \frac{11}{348} a^{11} - \frac{1}{348} a^{10} + \frac{7}{87} a^{9} + \frac{1}{174} a^{8} + \frac{31}{87} a^{7} - \frac{5}{58} a^{6} + \frac{139}{348} a^{5} - \frac{41}{174} a^{4} + \frac{23}{116} a^{3} + \frac{17}{58} a^{2} - \frac{167}{348} a + \frac{169}{348}$, $\frac{1}{1740} a^{16} + \frac{1}{1740} a^{15} - \frac{11}{348} a^{14} - \frac{9}{116} a^{13} - \frac{89}{1740} a^{12} + \frac{11}{174} a^{11} - \frac{41}{1740} a^{10} - \frac{9}{58} a^{9} + \frac{73}{870} a^{8} - \frac{1}{3} a^{7} - \frac{73}{348} a^{6} - \frac{409}{1740} a^{5} + \frac{167}{580} a^{4} - \frac{83}{348} a^{3} - \frac{33}{116} a^{2} + \frac{71}{174} a + \frac{35}{116}$, $\frac{1}{1740} a^{17} - \frac{1}{1740} a^{15} - \frac{5}{174} a^{14} - \frac{119}{1740} a^{13} + \frac{33}{580} a^{12} + \frac{19}{290} a^{11} + \frac{1}{290} a^{10} + \frac{18}{145} a^{9} - \frac{154}{435} a^{8} - \frac{53}{116} a^{7} - \frac{89}{290} a^{6} - \frac{1}{12} a^{5} - \frac{131}{290} a^{4} + \frac{47}{348} a^{3} - \frac{5}{12} a^{2} + \frac{10}{87} a + \frac{6}{29}$, $\frac{1}{1740} a^{18} + \frac{1}{1740} a^{15} + \frac{17}{580} a^{14} - \frac{41}{1740} a^{13} - \frac{1}{12} a^{12} - \frac{12}{145} a^{11} - \frac{1}{87} a^{10} + \frac{56}{435} a^{9} - \frac{259}{1740} a^{8} - \frac{106}{435} a^{7} - \frac{85}{174} a^{6} - \frac{3}{116} a^{5} + \frac{29}{60} a^{4} + \frac{143}{348} a^{3} - \frac{83}{348} a^{2} + \frac{55}{174} a - \frac{37}{87}$, $\frac{1}{312492896668107630447358294864280133928044600} a^{19} - \frac{55348100024689418563485940189812855443383}{312492896668107630447358294864280133928044600} a^{18} + \frac{2787528303253613863415285688175359844817}{78123224167026907611839573716070033482011150} a^{17} + \frac{107224217970315305630232490436945624083}{538780856324323500771307404938414024013870} a^{16} + \frac{160974971605340844072119818389788998240519}{312492896668107630447358294864280133928044600} a^{15} + \frac{5376799278414141677744535545851057452432041}{312492896668107630447358294864280133928044600} a^{14} - \frac{11267405832512476241328362357258490798363209}{312492896668107630447358294864280133928044600} a^{13} - \frac{76508056314128294439057532790933268235697}{1905444491878705063703404236977317889805150} a^{12} + \frac{12730747410136523804419253192006283191469547}{156246448334053815223679147432140066964022300} a^{11} - \frac{3249767479152950392580012374472053839459869}{104164298889369210149119431621426711309348200} a^{10} + \frac{40588165935594130176457116882888461762137267}{312492896668107630447358294864280133928044600} a^{9} - \frac{15225163935342143919481361490731193456138127}{104164298889369210149119431621426711309348200} a^{8} - \frac{2936574178943708885314015617755052532585297}{13020537361171151268639928952678338913668525} a^{7} + \frac{16180586466074830586210676520553334597932896}{39061612083513453805919786858035016741005575} a^{6} - \frac{8335435499478641474340686073757608875103637}{20832859777873842029823886324285342261869640} a^{5} + \frac{37189163908581156136814746877707797608588843}{312492896668107630447358294864280133928044600} a^{4} - \frac{5375775112400766087588757810641167240990669}{20832859777873842029823886324285342261869640} a^{3} + \frac{1696032679019418597164995268191630736882893}{7812322416702690761183957371607003348201115} a^{2} + \frac{164466587292878751170391339372377120609341}{2083285977787384202982388632428534226186964} a + \frac{19611509902765820695080347264439074581125847}{62498579333621526089471658972856026785608920}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22123034286000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 100 |
| The 10 conjugacy class representatives for $C_5:F_5$ |
| Character table for $C_5:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.6125.1, 10.10.870450781956328125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.10.8.1 | $x^{10} - 899 x^{5} + 204363$ | $5$ | $2$ | $8$ | $D_5$ | $[\ ]_{5}^{2}$ | |