Normalized defining polynomial
\( x^{20} - 244 x^{18} + 22695 x^{16} - 1103580 x^{14} + 31752023 x^{12} - 570295881 x^{10} + 6479901642 x^{8} - 45584687570 x^{6} + 185406068875 x^{4} - 369631364129 x^{2} + 219147162389 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1853091914135141046229493177600000000000000=2^{20}\cdot 5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{548639} a^{16} + \frac{180626}{548639} a^{14} - \frac{103914}{548639} a^{12} - \frac{3}{6029} a^{10} - \frac{129329}{548639} a^{8} - \frac{223786}{548639} a^{6} + \frac{4790}{548639} a^{4} - \frac{136021}{548639} a^{2} - \frac{18}{91}$, $\frac{1}{548639} a^{17} + \frac{180626}{548639} a^{15} - \frac{103914}{548639} a^{13} - \frac{3}{6029} a^{11} - \frac{129329}{548639} a^{9} - \frac{223786}{548639} a^{7} + \frac{4790}{548639} a^{5} - \frac{136021}{548639} a^{3} - \frac{18}{91} a$, $\frac{1}{16680716114782671793867374676086101064541} a^{18} - \frac{1432066893067648494427060748899989}{2382959444968953113409624953726585866363} a^{16} - \frac{1193163163407855474085485962355712362134}{16680716114782671793867374676086101064541} a^{14} - \frac{7275879975796788565788718721858225798798}{16680716114782671793867374676086101064541} a^{12} - \frac{3616625996112202540604825381550202062371}{16680716114782671793867374676086101064541} a^{10} + \frac{5481683900506090140722159922162484952810}{16680716114782671793867374676086101064541} a^{8} - \frac{129163778098748666189671050223662164062}{1283132008829436291835951898160469312657} a^{6} - \frac{470565857798612587761266231707709199300}{2382959444968953113409624953726585866363} a^{4} - \frac{875479943582479049878123374897339072}{2766746743204954684668663903812589329} a^{2} - \frac{150326034737092753512701320726319}{458906409554644996627743225047701}$, $\frac{1}{16680716114782671793867374676086101064541} a^{19} - \frac{1432066893067648494427060748899989}{2382959444968953113409624953726585866363} a^{17} - \frac{1193163163407855474085485962355712362134}{16680716114782671793867374676086101064541} a^{15} - \frac{7275879975796788565788718721858225798798}{16680716114782671793867374676086101064541} a^{13} - \frac{3616625996112202540604825381550202062371}{16680716114782671793867374676086101064541} a^{11} + \frac{5481683900506090140722159922162484952810}{16680716114782671793867374676086101064541} a^{9} - \frac{129163778098748666189671050223662164062}{1283132008829436291835951898160469312657} a^{7} - \frac{470565857798612587761266231707709199300}{2382959444968953113409624953726585866363} a^{5} - \frac{875479943582479049878123374897339072}{2766746743204954684668663903812589329} a^{3} - \frac{150326034737092753512701320726319}{458906409554644996627743225047701} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 453280136478000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||