Normalized defining polynomial
\( x^{20} - 5 x^{19} - 30 x^{18} + 160 x^{17} + 330 x^{16} - 1933 x^{15} - 1700 x^{14} + 11500 x^{13} + 4245 x^{12} - 36760 x^{11} - 5160 x^{10} + 65020 x^{9} + 4050 x^{8} - 63410 x^{7} - 3400 x^{6} + 31774 x^{5} + 1655 x^{4} - 6755 x^{3} + 100 x^{2} + 460 x - 41 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18475420666617031250000000000000000=2^{16}\cdot 5^{22}\cdot 7^{8}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{287} a^{18} - \frac{2}{41} a^{17} + \frac{3}{41} a^{16} - \frac{127}{287} a^{15} - \frac{102}{287} a^{14} - \frac{100}{287} a^{13} - \frac{38}{287} a^{12} + \frac{113}{287} a^{11} + \frac{51}{287} a^{10} - \frac{61}{287} a^{9} - \frac{113}{287} a^{8} + \frac{10}{287} a^{7} + \frac{94}{287} a^{6} + \frac{143}{287} a^{5} + \frac{30}{287} a^{4} + \frac{115}{287} a^{3} + \frac{92}{287} a^{2} - \frac{136}{287} a - \frac{3}{7}$, $\frac{1}{2440723403310341801008721} a^{19} + \frac{4061909452732819685146}{2440723403310341801008721} a^{18} - \frac{160441232282159545349600}{348674771901477400144103} a^{17} + \frac{127101791071723988921827}{2440723403310341801008721} a^{16} + \frac{387335816449595009257948}{2440723403310341801008721} a^{15} + \frac{1178132599253240958810725}{2440723403310341801008721} a^{14} - \frac{7913501962541139814460}{26821136300113646164931} a^{13} - \frac{430346393986716754724182}{2440723403310341801008721} a^{12} - \frac{612296056879488576881555}{2440723403310341801008721} a^{11} - \frac{481104915125495118262211}{2440723403310341801008721} a^{10} - \frac{1055733429983414816789978}{2440723403310341801008721} a^{9} - \frac{99222572375748982326333}{2440723403310341801008721} a^{8} + \frac{556375297611779277270018}{2440723403310341801008721} a^{7} - \frac{27144551467450463591717}{78733013010011025838991} a^{6} - \frac{1050361570751418279461799}{2440723403310341801008721} a^{5} - \frac{9855620623184206197012}{348674771901477400144103} a^{4} - \frac{142745557887222856406462}{348674771901477400144103} a^{3} + \frac{594967106912697277524366}{2440723403310341801008721} a^{2} + \frac{37307441383582643279446}{78733013010011025838991} a + \frac{5916958838418507571308}{59529839105130287829481}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49401883665.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T22):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 5.5.2450000.1, 10.10.30012500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |