Normalized defining polynomial
\( x^{20} - 46 x^{18} - 22 x^{17} + 770 x^{16} + 505 x^{15} - 6277 x^{14} - 3987 x^{13} + 28833 x^{12} + 15285 x^{11} - 79106 x^{10} - 32462 x^{9} + 130714 x^{8} + 41523 x^{7} - 126766 x^{6} - 33440 x^{5} + 66241 x^{4} + 16362 x^{3} - 14297 x^{2} - 3763 x - 67 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18176156878239859979587199616662833=61^{9}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{397} a^{18} + \frac{36}{397} a^{17} + \frac{132}{397} a^{16} - \frac{185}{397} a^{15} + \frac{173}{397} a^{14} - \frac{23}{397} a^{13} - \frac{34}{397} a^{12} - \frac{141}{397} a^{11} - \frac{163}{397} a^{10} - \frac{82}{397} a^{9} + \frac{132}{397} a^{8} + \frac{49}{397} a^{7} - \frac{12}{397} a^{6} - \frac{193}{397} a^{5} - \frac{7}{397} a^{4} - \frac{141}{397} a^{3} - \frac{87}{397} a^{2} + \frac{158}{397} a + \frac{126}{397}$, $\frac{1}{38708404961621482738817} a^{19} - \frac{42200915080361033814}{38708404961621482738817} a^{18} - \frac{10733015825945963943640}{38708404961621482738817} a^{17} + \frac{8173103930132821209971}{38708404961621482738817} a^{16} + \frac{9171096908472860931182}{38708404961621482738817} a^{15} - \frac{8613982696331597548804}{38708404961621482738817} a^{14} + \frac{18714671754948244212884}{38708404961621482738817} a^{13} + \frac{11832251337795164103929}{38708404961621482738817} a^{12} + \frac{2353269386364047847477}{38708404961621482738817} a^{11} - \frac{18437918832158552285126}{38708404961621482738817} a^{10} + \frac{7888700736176874493395}{38708404961621482738817} a^{9} + \frac{3627805651096575418994}{38708404961621482738817} a^{8} - \frac{16193878710823178367146}{38708404961621482738817} a^{7} - \frac{4855567087528718609259}{38708404961621482738817} a^{6} + \frac{7093744119782911077570}{38708404961621482738817} a^{5} - \frac{7476828809755423671154}{38708404961621482738817} a^{4} + \frac{14803517630333137404649}{38708404961621482738817} a^{3} - \frac{7107250655029391104493}{38708404961621482738817} a^{2} - \frac{18685670695320543514555}{38708404961621482738817} a - \frac{1629314822031957402652}{38708404961621482738817}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47567559110.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 20T65):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||