Normalized defining polynomial
\( x^{20} - 40 x^{18} - 30 x^{17} + 570 x^{16} + 660 x^{15} - 3690 x^{14} - 4780 x^{13} + 12770 x^{12} + 16200 x^{11} - 25376 x^{10} - 28100 x^{9} + 29300 x^{8} + 24400 x^{7} - 19000 x^{6} - 9120 x^{5} + 6280 x^{4} + 760 x^{3} - 780 x^{2} + 80 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(180784159360000000000000000000000=2^{28}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{348} a^{18} - \frac{13}{87} a^{17} + \frac{19}{87} a^{16} - \frac{20}{87} a^{15} - \frac{3}{29} a^{14} + \frac{19}{87} a^{13} - \frac{41}{174} a^{12} - \frac{31}{174} a^{11} - \frac{13}{58} a^{10} + \frac{25}{87} a^{9} - \frac{17}{58} a^{8} - \frac{16}{87} a^{7} + \frac{9}{29} a^{6} - \frac{2}{29} a^{5} - \frac{16}{87} a^{4} - \frac{14}{87} a^{3} + \frac{32}{87} a^{2} - \frac{14}{29} a - \frac{4}{87}$, $\frac{1}{845334585316617996} a^{19} - \frac{273474190022917}{845334585316617996} a^{18} + \frac{26077381151053516}{211333646329154499} a^{17} + \frac{824317748144396}{7287367114798431} a^{16} - \frac{30772524315150317}{140889097552769666} a^{15} - \frac{10258377116777953}{422667292658308998} a^{14} - \frac{19348939530037865}{422667292658308998} a^{13} - \frac{42531750559562261}{211333646329154499} a^{12} - \frac{5159262331343922}{70444548776384833} a^{11} - \frac{35905478464577791}{422667292658308998} a^{10} - \frac{50756736782487051}{140889097552769666} a^{9} + \frac{156367079043516097}{422667292658308998} a^{8} + \frac{2717032755110053}{70444548776384833} a^{7} + \frac{22211665689822061}{70444548776384833} a^{6} - \frac{11133705200355247}{211333646329154499} a^{5} + \frac{55574508164167417}{211333646329154499} a^{4} + \frac{65094765387499967}{211333646329154499} a^{3} - \frac{6480948048512046}{70444548776384833} a^{2} - \frac{57656464573207228}{211333646329154499} a + \frac{784023966847350}{70444548776384833}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6884203494.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{5}, \sqrt{7})\), 5.5.2450000.1, 10.10.30012500000000.1, 10.10.13445600000000000.1, 10.10.2689120000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |