Normalized defining polynomial
\( x^{20} - 5 x^{19} - 35 x^{18} + 215 x^{17} + 120 x^{16} - 2121 x^{15} + 1735 x^{14} + 7145 x^{13} - 11480 x^{12} - 5515 x^{11} + 19881 x^{10} - 5515 x^{9} - 11480 x^{8} + 7145 x^{7} + 1735 x^{6} - 2121 x^{5} + 120 x^{4} + 215 x^{3} - 35 x^{2} - 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18020324707031250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{31}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{75} a^{14} - \frac{1}{75} a^{13} + \frac{2}{25} a^{12} + \frac{4}{75} a^{11} - \frac{4}{75} a^{10} - \frac{1}{25} a^{9} - \frac{2}{75} a^{8} + \frac{2}{75} a^{7} - \frac{32}{75} a^{6} - \frac{11}{25} a^{5} - \frac{4}{75} a^{4} - \frac{26}{75} a^{3} + \frac{7}{25} a^{2} + \frac{14}{75} a - \frac{29}{75}$, $\frac{1}{75} a^{15} + \frac{1}{15} a^{13} - \frac{1}{15} a^{12} - \frac{7}{75} a^{10} - \frac{1}{15} a^{9} - \frac{4}{15} a^{6} + \frac{23}{75} a^{5} - \frac{2}{5} a^{4} - \frac{1}{15} a^{3} + \frac{1}{15} a^{2} + \frac{2}{5} a + \frac{31}{75}$, $\frac{1}{75} a^{16} + \frac{1}{25} a^{11} - \frac{1}{15} a^{8} + \frac{6}{25} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{3}{25} a + \frac{2}{15}$, $\frac{1}{75} a^{17} + \frac{1}{25} a^{12} - \frac{1}{15} a^{9} + \frac{1}{25} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{8}{25} a^{2} - \frac{4}{15} a - \frac{1}{5}$, $\frac{1}{74325} a^{18} + \frac{74}{24775} a^{17} - \frac{61}{24775} a^{16} + \frac{74}{74325} a^{15} + \frac{254}{74325} a^{14} + \frac{1949}{74325} a^{13} - \frac{1202}{14865} a^{12} - \frac{5368}{74325} a^{11} + \frac{2272}{24775} a^{10} - \frac{5812}{74325} a^{9} + \frac{233}{2973} a^{8} - \frac{3386}{74325} a^{7} + \frac{1918}{74325} a^{6} + \frac{5543}{14865} a^{5} + \frac{5209}{74325} a^{4} + \frac{8002}{74325} a^{3} - \frac{30904}{74325} a^{2} + \frac{16078}{74325} a - \frac{32702}{74325}$, $\frac{1}{74325} a^{19} + \frac{83}{74325} a^{17} + \frac{23}{24775} a^{16} - \frac{106}{24775} a^{15} + \frac{22}{24775} a^{14} + \frac{769}{24775} a^{13} + \frac{304}{24775} a^{12} + \frac{1384}{74325} a^{11} - \frac{1572}{24775} a^{10} + \frac{2834}{74325} a^{9} + \frac{558}{24775} a^{8} + \frac{6}{991} a^{7} - \frac{8158}{24775} a^{6} + \frac{4839}{24775} a^{5} + \frac{10298}{24775} a^{4} - \frac{33458}{74325} a^{3} - \frac{10168}{24775} a^{2} - \frac{15589}{74325} a - \frac{1204}{4955}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2193798277.46 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 5.5.11250000.1 x5, 10.10.632812500000000.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.5.11250000.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||