Normalized defining polynomial
\( x^{20} - 100 x^{18} + 4250 x^{16} - 101 x^{15} - 100000 x^{14} + 7575 x^{13} + 1421875 x^{12} - 227250 x^{11} - 12505424 x^{10} + 3471875 x^{9} + 66677450 x^{8} - 28406250 x^{7} - 200058500 x^{6} + 118907199 x^{5} + 278040625 x^{4} - 210961225 x^{3} - 84750000 x^{2} + 68478000 x - 6502099 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17843751288604107685387134552001953125=5^{35}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(475=5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{475}(1,·)$, $\chi_{475}(322,·)$, $\chi_{475}(132,·)$, $\chi_{475}(134,·)$, $\chi_{475}(398,·)$, $\chi_{475}(208,·)$, $\chi_{475}(18,·)$, $\chi_{475}(227,·)$, $\chi_{475}(324,·)$, $\chi_{475}(286,·)$, $\chi_{475}(229,·)$, $\chi_{475}(96,·)$, $\chi_{475}(417,·)$, $\chi_{475}(419,·)$, $\chi_{475}(37,·)$, $\chi_{475}(39,·)$, $\chi_{475}(303,·)$, $\chi_{475}(113,·)$, $\chi_{475}(381,·)$, $\chi_{475}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} + \frac{5}{11} a^{8} - \frac{5}{11} a^{6} - \frac{1}{11} a^{5} - \frac{2}{11} a^{4} + \frac{3}{11} a^{3} + \frac{5}{11} a^{2} - \frac{4}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{5}{11} a^{9} - \frac{5}{11} a^{7} - \frac{1}{11} a^{6} - \frac{2}{11} a^{5} + \frac{3}{11} a^{4} + \frac{5}{11} a^{3} - \frac{4}{11} a^{2} - \frac{1}{11} a$, $\frac{1}{11} a^{12} + \frac{3}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{3}{11} a^{5} + \frac{4}{11} a^{4} + \frac{3}{11} a^{3} - \frac{4}{11} a^{2} - \frac{2}{11} a + \frac{5}{11}$, $\frac{1}{200108161} a^{13} + \frac{6671470}{200108161} a^{12} - \frac{65}{200108161} a^{11} - \frac{71878}{200108161} a^{10} + \frac{1625}{200108161} a^{9} - \frac{89341000}{200108161} a^{8} - \frac{36402802}{200108161} a^{7} + \frac{86314489}{200108161} a^{6} + \frac{72880354}{200108161} a^{5} - \frac{76012471}{200108161} a^{4} - \frac{36667677}{200108161} a^{3} - \frac{80196297}{200108161} a^{2} + \frac{54778078}{200108161} a - \frac{29266262}{200108161}$, $\frac{1}{200108161} a^{14} - \frac{70}{200108161} a^{12} - \frac{3025952}{200108161} a^{11} + \frac{175}{18191651} a^{10} + \frac{93660756}{200108161} a^{9} - \frac{26250}{200108161} a^{8} - \frac{54050020}{200108161} a^{7} + \frac{54758703}{200108161} a^{6} + \frac{18146400}{200108161} a^{5} + \frac{35770802}{200108161} a^{4} - \frac{33622884}{200108161} a^{3} + \frac{18957276}{200108161} a^{2} + \frac{15431233}{200108161} a - \frac{156250}{200108161}$, $\frac{1}{200108161} a^{15} - \frac{9005978}{200108161} a^{12} - \frac{2625}{200108161} a^{11} - \frac{2328959}{200108161} a^{10} + \frac{87500}{200108161} a^{9} + \frac{22774528}{200108161} a^{8} - \frac{19372901}{200108161} a^{7} + \frac{38724149}{200108161} a^{6} + \frac{43733302}{200108161} a^{5} - \frac{60725413}{200108161} a^{4} - \frac{37332276}{200108161} a^{3} + \frac{41102253}{200108161} a^{2} - \frac{58704104}{200108161} a + \frac{79784827}{200108161}$, $\frac{1}{200108161} a^{16} - \frac{3000}{200108161} a^{12} - \frac{5584697}{200108161} a^{11} + \frac{10000}{18191651} a^{10} - \frac{41365230}{200108161} a^{9} - \frac{1687500}{200108161} a^{8} - \frac{64798003}{200108161} a^{7} - \frac{60166604}{200108161} a^{6} - \frac{2595723}{200108161} a^{5} - \frac{25558349}{200108161} a^{4} - \frac{13263717}{200108161} a^{3} - \frac{34708255}{200108161} a^{2} - \frac{3864399}{18191651} a - \frac{11718750}{200108161}$, $\frac{1}{200108161} a^{17} - \frac{1990797}{200108161} a^{12} - \frac{85000}{200108161} a^{11} - \frac{210556}{18191651} a^{10} + \frac{3187500}{200108161} a^{9} - \frac{70203820}{200108161} a^{8} - \frac{9516698}{200108161} a^{7} - \frac{71855661}{200108161} a^{6} + \frac{42816886}{200108161} a^{5} - \frac{36523083}{200108161} a^{4} - \frac{14634007}{200108161} a^{3} - \frac{28623263}{200108161} a^{2} + \frac{15523418}{200108161} a - \frac{5878274}{200108161}$, $\frac{1}{200108161} a^{18} - \frac{102000}{200108161} a^{12} - \frac{4376364}{200108161} a^{11} + \frac{382500}{18191651} a^{10} - \frac{505969}{200108161} a^{9} - \frac{68850000}{200108161} a^{8} + \frac{37735979}{200108161} a^{7} + \frac{722011}{18191651} a^{6} - \frac{51227632}{200108161} a^{5} + \frac{70389959}{200108161} a^{4} - \frac{73724320}{200108161} a^{3} - \frac{26508}{18191651} a^{2} + \frac{10743923}{200108161} a + \frac{69074483}{200108161}$, $\frac{1}{200108161} a^{19} + \frac{8666330}{200108161} a^{12} - \frac{2422500}{200108161} a^{11} - \frac{826616}{200108161} a^{10} + \frac{96900000}{200108161} a^{9} + \frac{90429664}{200108161} a^{8} + \frac{38215382}{200108161} a^{7} - \frac{77534196}{200108161} a^{6} + \frac{4402270}{18191651} a^{5} - \frac{45918469}{200108161} a^{4} - \frac{27241545}{200108161} a^{3} + \frac{82621885}{200108161} a^{2} - \frac{77999214}{200108161} a - \frac{1631346}{18191651}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1261324189610 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.45125.1, 5.5.390625.1, \(\Q(\zeta_{25})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | 19.10.5.1 | $x^{10} - 722 x^{6} + 130321 x^{2} - 61902475$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 19.10.5.1 | $x^{10} - 722 x^{6} + 130321 x^{2} - 61902475$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |