Normalized defining polynomial
\( x^{20} - 2585 x^{18} + 2796035 x^{16} - 1660412600 x^{14} + 598407347450 x^{12} - 136595530105375 x^{10} + 19966245005965500 x^{8} - 1840082858463815625 x^{6} + 101865903320796257500 x^{4} - 3042306203259125790625 x^{2} + 37203670831694647878125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17505265916412191723617107336923861792000000000000000=2^{20}\cdot 5^{15}\cdot 11^{18}\cdot 661^{2}\cdot 474541^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $409.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 661, 474541$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{275} a^{10}$, $\frac{1}{275} a^{11}$, $\frac{1}{1375} a^{12}$, $\frac{1}{1375} a^{13}$, $\frac{1}{1375} a^{14}$, $\frac{1}{1375} a^{15}$, $\frac{1}{22415881584235431875} a^{16} + \frac{349832848460177}{4483176316847086375} a^{14} - \frac{241300569862342}{896635263369417275} a^{12} + \frac{493977929129738}{896635263369417275} a^{10} - \frac{46613969441152}{3260491866797881} a^{8} - \frac{1619937321857511}{16302459333989405} a^{6} - \frac{125057366668311}{16302459333989405} a^{4} + \frac{407349581411264}{3260491866797881} a^{2} + \frac{248976802939958}{3260491866797881}$, $\frac{1}{22415881584235431875} a^{17} + \frac{349832848460177}{4483176316847086375} a^{15} - \frac{241300569862342}{896635263369417275} a^{13} + \frac{493977929129738}{896635263369417275} a^{11} - \frac{46613969441152}{3260491866797881} a^{9} - \frac{1619937321857511}{16302459333989405} a^{7} - \frac{125057366668311}{16302459333989405} a^{5} + \frac{407349581411264}{3260491866797881} a^{3} + \frac{248976802939958}{3260491866797881} a$, $\frac{1}{341156682243166661591991129821849611478999983020680320441780625} a^{18} + \frac{240803517905595691656628826460335806895682}{31014243840287878326544648165622691952636362092789120040161875} a^{16} + \frac{99213540730561293990925659135709521125904310232382101176}{563895342550688696846266330284048944593388401687074909821125} a^{14} - \frac{9664825560272948290377100263253277016616014727530753864}{563895342550688696846266330284048944593388401687074909821125} a^{12} + \frac{71396303291719390638647151940755776172276202488099103053}{112779068510137739369253266056809788918677680337414981964225} a^{10} - \frac{10593085515307389568174951342869515829799755713279760626651}{1240569753611515133061785926624907678105454483711564801606475} a^{8} + \frac{801367269786034583479642993718222138296205656440833556916}{22555813702027547873850653211361957783735536067482996392845} a^{6} + \frac{106674677270393542324616044972307909953950354509045448893}{4511162740405509574770130642272391556747107213496599278569} a^{4} - \frac{2141681869877241364818779470412482421555629834008272304713}{4511162740405509574770130642272391556747107213496599278569} a^{2} - \frac{2721376182287831693009526786491474902402449856640}{14381801623174389876532465054980835057321963978169}$, $\frac{1}{341156682243166661591991129821849611478999983020680320441780625} a^{19} + \frac{240803517905595691656628826460335806895682}{31014243840287878326544648165622691952636362092789120040161875} a^{17} + \frac{99213540730561293990925659135709521125904310232382101176}{563895342550688696846266330284048944593388401687074909821125} a^{15} - \frac{9664825560272948290377100263253277016616014727530753864}{563895342550688696846266330284048944593388401687074909821125} a^{13} + \frac{71396303291719390638647151940755776172276202488099103053}{112779068510137739369253266056809788918677680337414981964225} a^{11} - \frac{10593085515307389568174951342869515829799755713279760626651}{1240569753611515133061785926624907678105454483711564801606475} a^{9} + \frac{801367269786034583479642993718222138296205656440833556916}{22555813702027547873850653211361957783735536067482996392845} a^{7} + \frac{106674677270393542324616044972307909953950354509045448893}{4511162740405509574770130642272391556747107213496599278569} a^{5} - \frac{2141681869877241364818779470412482421555629834008272304713}{4511162740405509574770130642272391556747107213496599278569} a^{3} - \frac{2721376182287831693009526786491474902402449856640}{14381801623174389876532465054980835057321963978169} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22267254752000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_2^4:C_5$ (as 20T75):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_4\times C_2^4:C_5$ |
| Character table for $C_4\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 661 | Data not computed | ||||||
| 474541 | Data not computed | ||||||