Normalized defining polynomial
\( x^{20} - 165 x^{18} + 11473 x^{16} - 438383 x^{14} + 10041889 x^{12} - 140937236 x^{10} + 1188999845 x^{8} - 5709838629 x^{6} + 14341314097 x^{4} - 16233361694 x^{2} + 6570561481 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17191052721619032309920296885375992856576=2^{20}\cdot 11^{18}\cdot 7369^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{38734109831914689177721106578141} a^{18} + \frac{45488279738453771928814077666}{3521282711992244470701918779831} a^{16} - \frac{481178130927957071808123479584}{38734109831914689177721106578141} a^{14} + \frac{131377836811732871328864392360}{3521282711992244470701918779831} a^{12} - \frac{173297224677462681635604527051}{38734109831914689177721106578141} a^{10} - \frac{894019921744807353016986648009}{3521282711992244470701918779831} a^{8} - \frac{69877025421178932196979491891}{3521282711992244470701918779831} a^{6} + \frac{143735045015156517845022286114}{3521282711992244470701918779831} a^{4} - \frac{914598674561054986417378995466}{3521282711992244470701918779831} a^{2} + \frac{225706752714275549068558011}{477850822634311910802268799}$, $\frac{1}{38734109831914689177721106578141} a^{19} + \frac{45488279738453771928814077666}{3521282711992244470701918779831} a^{17} - \frac{481178130927957071808123479584}{38734109831914689177721106578141} a^{15} + \frac{131377836811732871328864392360}{3521282711992244470701918779831} a^{13} - \frac{173297224677462681635604527051}{38734109831914689177721106578141} a^{11} - \frac{894019921744807353016986648009}{3521282711992244470701918779831} a^{9} - \frac{69877025421178932196979491891}{3521282711992244470701918779831} a^{7} + \frac{143735045015156517845022286114}{3521282711992244470701918779831} a^{5} - \frac{914598674561054986417378995466}{3521282711992244470701918779831} a^{3} + \frac{225706752714275549068558011}{477850822634311910802268799} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44953700534800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 56 conjugacy class representatives for t20n331 are not computed |
| Character table for t20n331 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1579610594089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 7369 | Data not computed | ||||||