Normalized defining polynomial
\( x^{20} - 143 x^{18} + 8437 x^{16} - 270083 x^{14} + 5181616 x^{12} - 62146183 x^{10} + 472121067 x^{8} - 2248682392 x^{6} + 6447181169 x^{4} - 10085441839 x^{2} + 6570561481 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17191052721619032309920296885375992856576=2^{20}\cdot 11^{18}\cdot 7369^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{787530434310336039837686596562083} a^{18} - \frac{2761554414850983865797833327967}{71593675846394185439789690596553} a^{16} + \frac{400162151252212313765089263921}{71593675846394185439789690596553} a^{14} + \frac{355301300874578013624289139447}{71593675846394185439789690596553} a^{12} - \frac{3048454525185599356229548153453}{71593675846394185439789690596553} a^{10} + \frac{21640835895880296804537344691781}{71593675846394185439789690596553} a^{8} + \frac{2111562728526631421393383611334}{6508515986035835039980880963323} a^{6} + \frac{719463196249867770957189957996}{6508515986035835039980880963323} a^{4} - \frac{98587785208640431829893632757}{6508515986035835039980880963323} a^{2} - \frac{79445388556442580841430239}{883229201524743525577538467}$, $\frac{1}{787530434310336039837686596562083} a^{19} - \frac{2761554414850983865797833327967}{71593675846394185439789690596553} a^{17} + \frac{400162151252212313765089263921}{71593675846394185439789690596553} a^{15} + \frac{355301300874578013624289139447}{71593675846394185439789690596553} a^{13} - \frac{3048454525185599356229548153453}{71593675846394185439789690596553} a^{11} + \frac{21640835895880296804537344691781}{71593675846394185439789690596553} a^{9} + \frac{2111562728526631421393383611334}{6508515986035835039980880963323} a^{7} + \frac{719463196249867770957189957996}{6508515986035835039980880963323} a^{5} - \frac{98587785208640431829893632757}{6508515986035835039980880963323} a^{3} - \frac{79445388556442580841430239}{883229201524743525577538467} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47784305792100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 56 conjugacy class representatives for t20n331 are not computed |
| Character table for t20n331 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1579610594089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 7369 | Data not computed | ||||||