Normalized defining polynomial
\( x^{20} - x^{19} - 90 x^{18} - 22 x^{17} + 2754 x^{16} + 2334 x^{15} - 37137 x^{14} - 43042 x^{13} + 224656 x^{12} + 289218 x^{11} - 540165 x^{10} - 663530 x^{9} + 554743 x^{8} + 519154 x^{7} - 306986 x^{6} - 134595 x^{5} + 75997 x^{4} + 3203 x^{3} - 2850 x^{2} - 102 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[20, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17163177241103084972955413201910386914813=13^{12}\cdot 277^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{277} a^{16} + \frac{53}{277} a^{15} - \frac{122}{277} a^{14} + \frac{122}{277} a^{13} - \frac{63}{277} a^{12} - \frac{44}{277} a^{11} - \frac{8}{277} a^{10} + \frac{11}{277} a^{9} - \frac{103}{277} a^{8} + \frac{45}{277} a^{7} - \frac{21}{277} a^{6} + \frac{83}{277} a^{5} - \frac{110}{277} a^{4} - \frac{108}{277} a^{3} + \frac{105}{277} a^{2} - \frac{98}{277} a - \frac{41}{277}$, $\frac{1}{1939} a^{17} - \frac{3}{1939} a^{16} - \frac{43}{1939} a^{15} + \frac{860}{1939} a^{14} + \frac{123}{277} a^{13} - \frac{117}{1939} a^{12} + \frac{517}{1939} a^{11} + \frac{736}{1939} a^{10} + \frac{666}{1939} a^{9} + \frac{827}{1939} a^{8} - \frac{879}{1939} a^{7} - \frac{957}{1939} a^{6} - \frac{880}{1939} a^{5} - \frac{596}{1939} a^{4} + \frac{59}{1939} a^{3} - \frac{23}{277} a^{2} - \frac{132}{277} a + \frac{80}{1939}$, $\frac{1}{32963} a^{18} + \frac{8}{32963} a^{17} - \frac{2}{1939} a^{16} - \frac{14838}{32963} a^{15} + \frac{1319}{32963} a^{14} - \frac{14607}{32963} a^{13} - \frac{1042}{4709} a^{12} + \frac{12331}{32963} a^{11} - \frac{7086}{32963} a^{10} + \frac{8615}{32963} a^{9} - \frac{829}{4709} a^{8} + \frac{137}{4709} a^{7} - \frac{6472}{32963} a^{6} - \frac{1247}{4709} a^{5} - \frac{11117}{32963} a^{4} - \frac{9865}{32963} a^{3} - \frac{32}{4709} a^{2} + \frac{12946}{32963} a + \frac{14670}{32963}$, $\frac{1}{190130872209088862821608375289122577109} a^{19} + \frac{2741688410438708185561232043105729}{190130872209088862821608375289122577109} a^{18} + \frac{60320095081282950998387185836153}{2290733400109504371344679220350874423} a^{17} - \frac{14335898532129162445372935339323910}{27161553172726980403086910755588939587} a^{16} - \frac{11572238336808745299637384886750763248}{190130872209088862821608375289122577109} a^{15} + \frac{59715309539828359722955898747944170814}{190130872209088862821608375289122577109} a^{14} - \frac{2419246043797432996898064278621304555}{11184168953475815460094610311124857477} a^{13} + \frac{14989819217308755678570276195816764865}{190130872209088862821608375289122577109} a^{12} + \frac{434302374322629132614936709048250044}{4637338346563142995648984763149331149} a^{11} + \frac{6538743029977458519429622873444322434}{190130872209088862821608375289122577109} a^{10} + \frac{73244419873786757526579967567857633409}{190130872209088862821608375289122577109} a^{9} + \frac{3170326930481642492177005012368679681}{11184168953475815460094610311124857477} a^{8} + \frac{61411779211797356291918168640262051081}{190130872209088862821608375289122577109} a^{7} + \frac{32238396186941460309378844027583136754}{190130872209088862821608375289122577109} a^{6} + \frac{35511125298872254012102361890976548552}{190130872209088862821608375289122577109} a^{5} - \frac{65066473762967991665247301865698023783}{190130872209088862821608375289122577109} a^{4} - \frac{65992599598333176722826228980880071395}{190130872209088862821608375289122577109} a^{3} - \frac{73607170595293505865193779210031748763}{190130872209088862821608375289122577109} a^{2} - \frac{25536062896983803818241699387122439221}{190130872209088862821608375289122577109} a - \frac{77137269771063830518100737726617148458}{190130872209088862821608375289122577109}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40323641683000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 28 conjugacy class representatives for t20n138 |
| Character table for t20n138 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 5.5.12967201.1, 10.10.2185927923067213.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | $20$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 277 | Data not computed | ||||||